CCA2 and partial key recovery attack on PALOMA

Daniel J. Bernstein & Tanja Lange

thanks to Jolijn Cottaar, Kathrin Hövelmanns, Alex Pellegrini, and Silvia Ritsch for discussions

19 July 2024

Ingredients in PALOMA

- PALOMA is a code-based cryptosystem using Goppa codes.
- Parameters: *m*, *n*, and *t*.
 - *m* = 13.
 - $n < 2^m$ is code length.
 - *t* is number of errors code can efficiently correct.
- pk is a $mt \times (m mt)$ matrix M over \mathbb{F}_2 .
- pk expands to $mt \times n$ matrix $\hat{H} = [I|M]$.
- Encryption: $\hat{s} = \hat{H}\hat{e}$, for wt $(\hat{e}) = t$.

Ingredients in PALOMA

- PALOMA is a code-based cryptosystem using Goppa codes.
- Parameters: *m*, *n*, and *t*.
 - *m* = 13.
 - $n < 2^m$ is code length.
 - *t* is number of errors code can efficiently correct.
- pk is a $mt \times (m mt)$ matrix M over \mathbb{F}_2 .
- *pk* expands to $mt \times n$ matrix $\hat{H} = [I|M]$.
- Encryption: $\hat{s} = \hat{H}\hat{e}$, for wt $(\hat{e}) = t$.
- Decryption uses Goppa decoder to retrieve \hat{e} from \hat{s} .
- Assumption: $\hat{H} = SHP'$ hides structured Goppa matrix H(P' random permutation matrix, S invertible matrix to get $\hat{H} = [I|M]$).

PALOMA encapsulation

Image credit: PALOMA Team

(a)
$$\kappa, c = (\widehat{r}, \widehat{s}) \leftarrow \mathsf{Encap}(pk)$$

Daniel J. Bernsten & Tanja Lange

PALOMA decapsulation

Image credit: PALOMA Team

(b)
$$\kappa \leftarrow \mathsf{Decap}(sk; c = (\widehat{r}, \widehat{s}))$$

Daniel J. Bernsten & Tanja Lange

- Goes back to turn of century
 - "Reaction Attacks Against Several Public-Key Cryptosystems" (Hall, Goldberg, Schneier)
 - "Sloppy Alice attacks! Adaptive chosen ciphertext attacks on the McEliece cryptosystem" (Verheul, Doumen, Tilborg)
- Send specially crafted ciphertext, watch for reaction.

- Goes back to turn of century
 - "Reaction Attacks Against Several Public-Key Cryptosystems" (Hall, Goldberg, Schneier)
 - "Sloppy Alice attacks! Adaptive chosen ciphertext attacks on the McEliece cryptosystem" (Verheul, Doumen, Tilborg)
- Send specially crafted ciphertext, watch for reaction.
- Learn encrypted message (for codes) or key (lattices) from adaptive queries.

- Goes back to turn of century
 - "Reaction Attacks Against Several Public-Key Cryptosystems" (Hall, Goldberg, Schneier)
 - "Sloppy Alice attacks! Adaptive chosen ciphertext attacks on the McEliece cryptosystem" (Verheul, Doumen, Tilborg)
- Send specially crafted ciphertext, watch for reaction.
- Learn encrypted message (for codes) or key (lattices) from adaptive queries.
- Goppa decoder decodes up to and including t errors, fails for more.
- Change $\hat{s} = \hat{H}\hat{e}$ to $s' = \hat{s} + h_1$, where h_1 is the first column of \hat{H} .

- Goes back to turn of century
 - "Reaction Attacks Against Several Public-Key Cryptosystems" (Hall, Goldberg, Schneier)
 - "Sloppy Alice attacks! Adaptive chosen ciphertext attacks on the McEliece cryptosystem" (Verheul, Doumen, Tilborg)
- Send specially crafted ciphertext, watch for reaction.
- Learn encrypted message (for codes) or key (lattices) from adaptive queries.
- Goppa decoder decodes up to and including t errors, fails for more.
- Change $\hat{s} = \hat{H}\hat{e}$ to $s' = \hat{s} + h_1$, where h_1 is the first column of \hat{H} .
- s' is encryption of $e' = \hat{e} + e_1$.

- Goes back to turn of century
 - "Reaction Attacks Against Several Public-Key Cryptosystems" (Hall, Goldberg, Schneier)
 - "Sloppy Alice attacks! Adaptive chosen ciphertext attacks on the McEliece cryptosystem" (Verheul, Doumen, Tilborg)
- Send specially crafted ciphertext, watch for reaction.
- Learn encrypted message (for codes) or key (lattices) from adaptive queries.
- Goppa decoder decodes up to and including t errors, fails for more.
- Change $\hat{s} = \hat{H}\hat{e}$ to $s' = \hat{s} + h_j$, where h_j is the *j*-th column of \hat{H} .
- s' is encryption of $e' = \hat{e} + e_j$.

- Goes back to turn of century
 - "Reaction Attacks Against Several Public-Key Cryptosystems" (Hall, Goldberg, Schneier)
 - "Sloppy Alice attacks! Adaptive chosen ciphertext attacks on the McEliece cryptosystem" (Verheul, Doumen, Tilborg)
- Send specially crafted ciphertext, watch for reaction.
- Learn encrypted message (for codes) or key (lattices) from adaptive queries.
- Goppa decoder decodes up to and including t errors, fails for more.
- Change $\hat{s} = \hat{H}\hat{e}$ to $s' = \hat{s} + h_j$, where h_j is the *j*-th column of \hat{H} .
- s' is encryption of $e' = \hat{e} + e_j$.
- Decryption works iff e' has weight $\leq t$, i.e., if position j flipped from 1 to 0.

- Goes back to turn of century
 - "Reaction Attacks Against Several Public-Key Cryptosystems" (Hall, Goldberg, Schneier)
 - "Sloppy Alice attacks! Adaptive chosen ciphertext attacks on the McEliece cryptosystem" (Verheul, Doumen, Tilborg)
- Send specially crafted ciphertext, watch for reaction.
- Learn encrypted message (for codes) or key (lattices) from adaptive queries.
- Goppa decoder decodes up to and including t errors, fails for more.
- Change $\hat{s} = \hat{H}\hat{e}$ to $s' = \hat{s} + h_j$, where h_j is the *j*-th column of \hat{H} .
- s' is encryption of $e' = \hat{e} + e_j$.
- Decryption works iff e' has weight $\leq t$, i.e., if position j flipped from 1 to 0.
- Learn \hat{e} in at most n-1 steps.

- Goes back to turn of century
 - "Reaction Attacks Against Several Public-Key Cryptosystems" (Hall, Goldberg, Schneier)
 - "Sloppy Alice attacks! Adaptive chosen ciphertext attacks on the McEliece cryptosystem" (Verheul, Doumen, Tilborg)
- Send specially crafted ciphertext, watch for reaction.
- Learn encrypted message (for codes) or key (lattices) from adaptive queries.
- Goppa decoder decodes up to and including t errors, fails for more.
- Change $\hat{s} = \hat{H}\hat{e}$ to $s' = \hat{s} + h_j$, where h_j is the *j*-th column of \hat{H} .
- s' is encryption of $e' = \hat{e} + e_j$.
- Decryption works iff e' has weight $\leq t$, i.e., if position j flipped from 1 to 0.
- Learn \hat{e} in at most n-1 steps.
- Our attack with Alex Pellegrini from 13 April against the PALOMA software used the reaction that some decryption attempts crashed the program.

Daniel J. Bernsten & Tanja Lange

PALOMA decapsulation

Image credit: PALOMA Team

(b)
$$\kappa \leftarrow \mathsf{Decap}(sk; c = (\widehat{r}, \widehat{s}))$$

Daniel J. Bernsten & Tanja Lange

• Attack seems to be stopped: we don't know e' and \hat{r} is obtained from e^* by one-way function RO_G .

¹

Daniel J. Bernsten & Tanja Lange

- Attack seems to be stopped: we don't know e' and \hat{r} is obtained from e^* by one-way function RO_G .
- Observation:¹ Goppa decoder often returns $(00\cdots 0)$ on random input.

Daniel J. Bernsten & Tanja Lange

¹Can prove, but relies on details on decoder.

- Attack seems to be stopped: we don't know e' and \hat{r} is obtained from e^* by one-way function RO_G .
- Observation:¹ Goppa decoder often returns $(00\cdots 0)$ on random input.
- Any permutation of $(00 \cdots 0)$ remains $(00 \cdots 0)$.

Daniel J. Bernsten & Tanja Lange

¹Can prove, but relies on details on decoder.

- Attack seems to be stopped: we don't know e' and \hat{r} is obtained from e^* by one-way function RO_G .
- Observation:¹ Goppa decoder often returns $(00\cdots 0)$ on random input.
- Any permutation of $(00 \cdots 0)$ remains $(00 \cdots 0)$.
- $\kappa = \text{RO}_H(e^*, \hat{r}, \hat{s})$ with $\hat{r} = \text{RO}_G(e^*)$ is computable for guessed e^* .

Daniel J. Bernsten & Tanja Lange

¹Can prove, but relies on details on decoder.

- Attack seems to be stopped: we don't know e' and \hat{r} is obtained from e^* by one-way function RO_G .
- Observation:¹ Goppa decoder often returns $(00\cdots 0)$ on random input.
- Any permutation of $(00 \cdots 0)$ remains $(00 \cdots 0)$.
- $\kappa = \operatorname{RO}_{H}(e^*, \hat{r}, \hat{s})$ with $\hat{r} = \operatorname{RO}_{G}(e^*)$ is computable for guessed e^* .
- Let $e = (00 \cdots 0), r = RO_G(e).$
- For *j* in 0, 1, 2, ..., *n*
 - if decapsulation of $(r, \hat{s} + h_j)$ returns $RO_H(e, r, \hat{s} + h_j)$ then we know $\hat{e}_j = 0$.
- Now know $\hat{e}_j = 0$ for 40 70% of all j.

Daniel J. Bernsten & Tanja Lange

¹Can prove, but relies on details on decoder.

- Attack seems to be stopped: we don't know e' and \hat{r} is obtained from e^* by one-way function RO_G .
- Observation:¹ Goppa decoder often returns $(00\cdots 0)$ on random input.
- Any permutation of $(00 \cdots 0)$ remains $(00 \cdots 0)$.
- $\kappa = \operatorname{RO}_{H}(e^*, \hat{r}, \hat{s})$ with $\hat{r} = \operatorname{RO}_{G}(e^*)$ is computable for guessed e^* .
- Let $e = (00 \cdots 0), r = RO_G(e).$
- For *j* in 0, 1, 2, ..., *n*
 - if decapsulation of $(r, \hat{s} + h_j)$ returns $RO_H(e, r, \hat{s} + h_j)$ then we know $\hat{e}_j = 0$.
- Now know $\hat{e}_j = 0$ for 40 70% of all j.
- $\hat{s} + h_i + h_j$ matches e' of weight t iff exactly one of positions i and j is 1.

¹Can prove, but relies on details on decoder.

Daniel J. Bernsten & Tanja Lange

- Attack seems to be stopped: we don't know e' and \hat{r} is obtained from e^* by one-way function RO_G .
- Observation:¹ Goppa decoder often returns $(00\cdots 0)$ on random input.
- Any permutation of $(00 \cdots 0)$ remains $(00 \cdots 0)$.
- $\kappa = \text{RO}_H(e^*, \hat{r}, \hat{s})$ with $\hat{r} = \text{RO}_G(e^*)$ is computable for guessed e^* .
- Let $e = (00 \cdots 0), r = RO_G(e).$
- For *j* in 0, 1, 2, ..., *n*
 - if decapsulation of $(r, \hat{s} + h_j)$ returns $RO_H(e, r, \hat{s} + h_j)$ then we know $\hat{e}_j = 0$.
- Now know $\hat{e}_j = 0$ for 40 70% of all j.
- $\hat{s} + h_i + h_j$ matches e' of weight t iff exactly one of positions i and j is 1.
- Use pairs of columns to identify all positions in original ê.
 Obtain e* using r̂.

Daniel J. Bernsten & Tanja Lange

¹Can prove, but relies on details on decoder.

- Attack seems to be stopped: we don't know e' and \hat{r} is obtained from e^* by one-way function RO_G .
- Observation:¹ Goppa decoder often returns $(00\cdots 0)$ on random input.
- Any permutation of $(00 \cdots 0)$ remains $(00 \cdots 0)$.
- $\kappa = \text{RO}_H(e^*, \hat{r}, \hat{s})$ with $\hat{r} = \text{RO}_G(e^*)$ is computable for guessed e^* .
- Let $e = (00 \cdots 0), r = RO_G(e).$
- For *j* in 0, 1, 2, ..., *n*
 - if decapsulation of $(r, \hat{s} + h_j)$ returns $RO_H(e, r, \hat{s} + h_j)$ then we know $\hat{e}_j = 0$.
- Now know $\hat{e}_j = 0$ for 40 70% of all j.
- $\hat{s} + h_i + h_j$ matches e' of weight t iff exactly one of positions i and j is 1.
- Use pairs of columns to identify all positions in original ê.
 Obtain e* using r̂. Our attack software takes 0.5 7 minutes.

Daniel J. Bernsten & Tanja Lange

¹Can prove, but relies on details on decoder.

- Attack seems to be stopped: we don't know e' and \hat{r} is obtained from e^* by one-way function RO_G .
- Observation:¹ Goppa decoder often returns $(00\cdots 0)$ on random input.
- Any permutation of $(00 \cdots 0)$ remains $(00 \cdots 0)$.
- $\kappa = \text{RO}_H(e^*, \hat{r}, \hat{s})$ with $\hat{r} = \text{RO}_G(e^*)$ is computable for guessed e^* .
- Let $e = (00 \cdots 0), r = RO_G(e).$
- For *j* in 0, 1, 2, ..., *n*
 - if decapsulation of $(r, \hat{s} + h_j)$ returns $\text{RO}_H(e, r, \hat{s} + h_j)$ then we know $\hat{e}_j = 0$.
- Now know $\hat{e}_j = 0$ for 40 70% of all j.
- $\hat{s} + h_i + h_j$ matches e' of weight t iff exactly one of positions i and j is 1.
- Use pairs of columns to identify all positions in original ê.
 Obtain e* using r̂. Our attack software takes 0.5 7 minutes.
- Same recovery as with Pellegrini. New: valid fake ciphertexts, predicting κ .

Daniel J. Bernsten & Tanja Lange

¹Can prove, but relies on details on decoder.

Binary Goppa code

Let $q = 2^m$. A binary Goppa code is defined by

- a list $L = (\alpha_1, \ldots, \alpha_n)$ of *n* distinct elements in \mathbb{F}_q , called support.
- a square-free polynomial $g(x) \in \mathbb{F}_q[x]$ of degree t with $g(\alpha_i) \neq 0$ for all $1 \leq i \leq n$. g(x) is called Goppa polynomial.

The corresponding binary Goppa code is

$$\left\{\mathsf{c}\in \mathbb{F}_2^n \left| S(\mathsf{c}) = \frac{c_1}{x-\alpha_1} + \frac{c_2}{x-\alpha_2} + \cdots + \frac{c_n}{x-\alpha_n} \equiv 0 \mod g(x) \right\}$$

- Congruence mod g defines $t \times n$ parity check-matrix over \mathbb{F}_q .
- Use explicit basis of $\mathbb{F}_q/\mathbb{F}_2$ to get $nt \times n$ matrix H.
- Restrict code words to having entries in \mathbb{F}_2 .
- Code has length *n*, dimension $k \ge n mt$ and minimum distance $d \ge 2t + 1$.

KeyGen in PALOMA

PALOMA chooses

$$g(x) = \prod_{\alpha \in T} (x - \alpha)$$

for $T \subseteq \mathbb{F}_q \setminus \{\alpha_1, \alpha_2, \dots, \alpha_n\}$ with |T| = t. Hence, g(x) splits completely over \mathbb{F}_q .

PALOMA KeyGen, main secret is string r:

1
$$(\alpha_1, \alpha_2, \ldots, \alpha_q) = \text{SHUFFLE}_r(\mathbb{F}_q).$$

2
$$L = (\alpha_1, \alpha_2, \ldots, \alpha_n), T = (\alpha_{n+1}, \alpha_{n+2}, \ldots, \alpha_{n+t}).$$

- **3** Compute g and parity-check matrix H.
- **4** Pick random permutation matrix P', compute HP' & bring to systematic form, repeat this step if fails.

Secrets are *L*, *g*, and *P*'; *sk* includes *S* with $\hat{H} = SHP' = [I|M]$. Public key is *M*, the rightmost n - mt columns of \hat{H} . *P*' effectively changes order of elements in *L*.

Partial key recovery attack

• Goppa codes can efficiently correct up to t errors.

• Let
$$(\alpha'_1, \alpha'_2, \dots, \alpha'_n) = P'L$$

• Observation:² Decoder used in PALOMA has exception:

$$He_j$$
 decodes to $(00\cdots 0)$ iff $\alpha'_j = 0$.

²Also easily explained from details on decoder.

Daniel J. Bernsten & Tanja Lange

CCA2 and partial key recovery attack on PALOMA

Partial key recovery attack

• Goppa codes can efficiently correct up to t errors.

• Let
$$(\alpha'_1, \alpha'_2, \ldots, \alpha'_n) = P'L$$
.

• Observation:² Decoder used in PALOMA has exception:

He_j decodes to $(00 \cdots 0)$ iff $\alpha'_j = 0$.

- Let $e = (00 \cdots 0), r = RO_G(e).$
- Attack algorithm:
 - **1** For *j* in 1, 2, 3, ..., *n*:
 - If decapsulation of (r, h_j) returns $RO_H(e, r, h_j)$: return " $\alpha'_j = 0$ ".
 - 2 Return "0 is not in support".
- This takes at most *n* steps and will find the position of 0 if included.

Daniel J. Bernsten & Tanja Lange

²Also easily explained from details on decoder.

Bonus slides

$$s(x) = \sum_{i=1}^{n} (c_i + e_i)/(x - \alpha_i)$$

$$s(x) = \sum_{i=1}^n (c_i + e_i)/(x - \alpha_i) \equiv \left(\sum_{i=1}^n e_i \prod_{j \neq i} (x - \alpha_j)\right) / \prod_{i=1}^n (x - \alpha_i) \mod g(x).$$

$$s(x) = \sum_{i=1}^n (c_i + e_i)/(x - \alpha_i) \equiv \left(\sum_{i=1}^n e_i \prod_{j \neq i} (x - \alpha_j)\right) / \prod_{i=1}^n (x - \alpha_i) \mod g(x).$$

• Put $f(x) = \prod_{i=1}^{n} (x - \alpha_i)^{e_i}$ with $e_i \in \{0, 1\}$, then $f'(x) = \sum_{i=1}^{n} e_i \prod_{j \neq i} (x - \alpha_j)^{e_j}$.

• Thus $s(x) \equiv f'(x)/f(x) \mod g(x)$. We want to find f.

$$s(x) = \sum_{i=1}^n (c_i + e_i)/(x - \alpha_i) \equiv \left(\sum_{i=1}^n e_i \prod_{j \neq i} (x - \alpha_j)\right) / \prod_{i=1}^n (x - \alpha_i) \mod g(x).$$

- Put $f(x) = \prod_{i=1}^{n} (x \alpha_i)^{e_i}$ with $e_i \in \{0, 1\}$, then $f'(x) = \sum_{i=1}^{n} e_i \prod_{j \neq i} (x \alpha_j)^{e_j}$.
- Thus $s(x) \equiv f'(x)/f(x) \mod g(x)$. We want to find f.
- Split f(x) into odd and even terms: $f(x) = A^2(x) + xB^2(x)$ with $f'(x) = B^2(x)$.
- Thus

$$B^{2}(x) \equiv f(x)s(x) \equiv (A^{2}(x) + xB^{2}(x))s(x) \mod g(x)$$

 $B^{2}(x)(x + 1/s(x)) \equiv A^{2}(x) \mod g(x)$

- Put $v(x) \equiv \sqrt{x + 1/s(x)} \mod g(x)$, then $A(x) \equiv B(x)v(x) \mod g(x)$.
- Can compute v(x) from s(x).
- Use XGCD on v and g, stop when $\deg(A) \leq \lfloor t/2 \rfloor, \deg(B) \leq \lfloor (t-1)/2 \rfloor$ in

$$A(x) = B(x)v(x) + h(x)g(x).$$

Daniel J. Bernsten & Tanja Lange

PALOMA uses extended Patterson decoder for reducible g, dealing with $gcd(g, s) \neq 1$.

- Let $\tilde{s} = 1 + xs$ and $g_1 = \operatorname{gcd}(g, s), g_2 = \operatorname{gcd}(g, \tilde{s}), g_{12} = g/(g_1g_2).$
- Compute $\tilde{s}_2 = \tilde{s}/g_2$ and $s_1 = s/g_1$.
- Replace u(x) = x + 1/s(x) by

 $u = g_1 \tilde{s}_2/(g_2 s_1) \mod g_{12}$

PALOMA uses extended Patterson decoder for reducible g, dealing with $gcd(g, s) \neq 1$.

- Let $\tilde{s} = 1 + xs$ and $g_1 = \gcd(g, s), g_2 = \gcd(g, \tilde{s}), g_{12} = g/(g_1g_2).$
- Compute $\tilde{s}_2 = \tilde{s}/g_2$ and $s_1 = s/g_1$.
- Replace u(x) = x + 1/s(x) by

$$u = g_1 ilde{s}_2/(g_2 s_1) mod g_{12}$$

- Deal with complication of computing $v = \sqrt{u} \mod g_{12}$ for reducible g_{12} .
- Let half-gcd return A', B', put

$$f(x) = (A'g_2)^2 + x(B'g_1)^2.$$

PALOMA uses extended Patterson decoder for reducible g, dealing with $gcd(g, s) \neq 1$.

- Let $\tilde{s} = 1 + xs$ and $g_1 = \gcd(g, s), g_2 = \gcd(g, \tilde{s}), g_{12} = g/(g_1g_2).$
- Compute $\tilde{s}_2 = \tilde{s}/g_2$ and $s_1 = s/g_1$.
- Replace u(x) = x + 1/s(x) by

$$u = g_1 \tilde{s}_2/(g_2 s_1) \mod g_{12}$$

- Deal with complication of computing $v = \sqrt{u} \mod g_{12}$ for reducible g_{12} .
- Let half-gcd return A', B', put

$$f(x) = (A'g_2)^2 + x(B'g_1)^2.$$

• Put $e = (00 \cdots 0)$.

• For j in 1, 2, ..., n: if $f(\alpha_j) = 0$ put $e = e + e_j$.

PALOMA uses extended Patterson decoder for reducible g, dealing with $gcd(g, s) \neq 1$.

- Let $\tilde{s} = 1 + xs$ and $g_1 = \gcd(g, s), g_2 = \gcd(g, \tilde{s}), g_{12} = g/(g_1g_2).$
- Compute $\tilde{s}_2 = \tilde{s}/g_2$ and $s_1 = s/g_1$.
- Replace u(x) = x + 1/s(x) by

$$u = g_1 \tilde{s}_2/(g_2 s_1) \mod g_{12}$$

- Deal with complication of computing $v = \sqrt{u} \mod g_{12}$ for reducible g_{12} .
- Let half-gcd return A', B', put

$$f(x) = (A'g_2)^2 + x(B'g_1)^2.$$

- Put $e = (00 \cdots 0)$.
- For j in 1, 2, ..., n: if $f(\alpha_j) = 0$ put $e = e + e_j$.
- Random polynomial has 0 roots in L with probability $\approx (1-1/q)^n$.