
Optimizing linear maps modulo 2

(i.e.: fast xor sequences

for bitsliced software)

D. J. Bernstein

University of Illinois at Chicago

NSF ITR–0716498

Example: size-4 poly Karatsuba.

Start with size 2:

F = F0 + F1x, G = G0 + G1x,

H0 = F0G0, H2 = F1G1,

H1 = (F0+F1)(G0+G1)�H0�H2,

) FG = H0 + H1x + H2x2.

Substitute x = t2 etc.:

F = f0 + f1t + f2t2 + f3t3,
G = f0 + f1t + f2t2 + f3t3,
H0 = (f0 + f1t)(g0 + g1t),
H2 = (f2 + f3t)(g2 + g3t),
H1 = (f0 + f2 + (f1 + f3)t) �

(g0 + g2 + (g1 + g3)t)
�H0 �H2

) FG = H0 + H1t2 + H2t4.

Optimizing linear maps modulo 2

(i.e.: fast xor sequences

for bitsliced software)

D. J. Bernstein

University of Illinois at Chicago

NSF ITR–0716498

Example: size-4 poly Karatsuba.

Start with size 2:

F = F0 + F1x, G = G0 + G1x,

H0 = F0G0, H2 = F1G1,

H1 = (F0+F1)(G0+G1)�H0�H2,

) FG = H0 + H1x + H2x2.

Substitute x = t2 etc.:

F = f0 + f1t + f2t2 + f3t3,
G = f0 + f1t + f2t2 + f3t3,
H0 = (f0 + f1t)(g0 + g1t),
H2 = (f2 + f3t)(g2 + g3t),
H1 = (f0 + f2 + (f1 + f3)t) �

(g0 + g2 + (g1 + g3)t)
�H0 �H2

) FG = H0 + H1t2 + H2t4.

Initial linear computation:

f0 + f2; f1 + f3; g0 + g2; g1 + g3;

algebraic complexity 4.

Three size-2 mults producing

H0 = p0 + p1t + p2t2;
H2 = q0 + q1t + q2t2;
H0 + H1 + H2 = r0 + r1t + r2t2.
Final linear reconstruction:

H1 = (r0 � p0 � q0) +

(r1 � p1 � q1)t +

(r2 � p2 � q2)t2,
algebraic complexity 6;

FG = H0 + H1t2 + H2t4,
algebraic complexity 2.

Optimizing linear maps modulo 2

(i.e.: fast xor sequences

for bitsliced software)

D. J. Bernstein

University of Illinois at Chicago

NSF ITR–0716498

Example: size-4 poly Karatsuba.

Start with size 2:

F = F0 + F1x, G = G0 + G1x,

H0 = F0G0, H2 = F1G1,

H1 = (F0+F1)(G0+G1)�H0�H2,

) FG = H0 + H1x + H2x2.

Substitute x = t2 etc.:

F = f0 + f1t + f2t2 + f3t3,
G = f0 + f1t + f2t2 + f3t3,
H0 = (f0 + f1t)(g0 + g1t),
H2 = (f2 + f3t)(g2 + g3t),
H1 = (f0 + f2 + (f1 + f3)t) �

(g0 + g2 + (g1 + g3)t)
�H0 �H2

) FG = H0 + H1t2 + H2t4.

Initial linear computation:

f0 + f2; f1 + f3; g0 + g2; g1 + g3;

algebraic complexity 4.

Three size-2 mults producing

H0 = p0 + p1t + p2t2;
H2 = q0 + q1t + q2t2;
H0 + H1 + H2 = r0 + r1t + r2t2.
Final linear reconstruction:

H1 = (r0 � p0 � q0) +

(r1 � p1 � q1)t +

(r2 � p2 � q2)t2,
algebraic complexity 6;

FG = H0 + H1t2 + H2t4,
algebraic complexity 2.

Optimizing linear maps modulo 2

(i.e.: fast xor sequences

for bitsliced software)

D. J. Bernstein

University of Illinois at Chicago

NSF ITR–0716498

Example: size-4 poly Karatsuba.

Start with size 2:

F = F0 + F1x, G = G0 + G1x,

H0 = F0G0, H2 = F1G1,

H1 = (F0+F1)(G0+G1)�H0�H2,

) FG = H0 + H1x + H2x2.

Substitute x = t2 etc.:

F = f0 + f1t + f2t2 + f3t3,
G = f0 + f1t + f2t2 + f3t3,
H0 = (f0 + f1t)(g0 + g1t),
H2 = (f2 + f3t)(g2 + g3t),
H1 = (f0 + f2 + (f1 + f3)t) �

(g0 + g2 + (g1 + g3)t)
�H0 �H2

) FG = H0 + H1t2 + H2t4.

Initial linear computation:

f0 + f2; f1 + f3; g0 + g2; g1 + g3;

algebraic complexity 4.

Three size-2 mults producing

H0 = p0 + p1t + p2t2;
H2 = q0 + q1t + q2t2;
H0 + H1 + H2 = r0 + r1t + r2t2.
Final linear reconstruction:

H1 = (r0 � p0 � q0) +

(r1 � p1 � q1)t +

(r2 � p2 � q2)t2,
algebraic complexity 6;

FG = H0 + H1t2 + H2t4,
algebraic complexity 2.

Example: size-4 poly Karatsuba.

Start with size 2:

F = F0 + F1x, G = G0 + G1x,

H0 = F0G0, H2 = F1G1,

H1 = (F0+F1)(G0+G1)�H0�H2,

) FG = H0 + H1x + H2x2.

Substitute x = t2 etc.:

F = f0 + f1t + f2t2 + f3t3,
G = f0 + f1t + f2t2 + f3t3,
H0 = (f0 + f1t)(g0 + g1t),
H2 = (f2 + f3t)(g2 + g3t),
H1 = (f0 + f2 + (f1 + f3)t) �

(g0 + g2 + (g1 + g3)t)
�H0 �H2

) FG = H0 + H1t2 + H2t4.

Initial linear computation:

f0 + f2; f1 + f3; g0 + g2; g1 + g3;

algebraic complexity 4.

Three size-2 mults producing

H0 = p0 + p1t + p2t2;
H2 = q0 + q1t + q2t2;
H0 + H1 + H2 = r0 + r1t + r2t2.
Final linear reconstruction:

H1 = (r0 � p0 � q0) +

(r1 � p1 � q1)t +

(r2 � p2 � q2)t2,
algebraic complexity 6;

FG = H0 + H1t2 + H2t4,
algebraic complexity 2.

Example: size-4 poly Karatsuba.

Start with size 2:

F = F0 + F1x, G = G0 + G1x,

H0 = F0G0, H2 = F1G1,

H1 = (F0+F1)(G0+G1)�H0�H2,

) FG = H0 + H1x + H2x2.

Substitute x = t2 etc.:

F = f0 + f1t + f2t2 + f3t3,
G = f0 + f1t + f2t2 + f3t3,
H0 = (f0 + f1t)(g0 + g1t),
H2 = (f2 + f3t)(g2 + g3t),
H1 = (f0 + f2 + (f1 + f3)t) �

(g0 + g2 + (g1 + g3)t)
�H0 �H2

) FG = H0 + H1t2 + H2t4.

Initial linear computation:

f0 + f2; f1 + f3; g0 + g2; g1 + g3;

algebraic complexity 4.

Three size-2 mults producing

H0 = p0 + p1t + p2t2;
H2 = q0 + q1t + q2t2;
H0 + H1 + H2 = r0 + r1t + r2t2.
Final linear reconstruction:

H1 = (r0 � p0 � q0) +

(r1 � p1 � q1)t +

(r2 � p2 � q2)t2,
algebraic complexity 6;

FG = H0 + H1t2 + H2t4,
algebraic complexity 2.

Let’s look more closely

at the reconstruction:

h0 = p0;

h1 = p1;

h2 = p2 + (r0 � p0 � q0);
h3 = (r1 � p1 � q1);
h4 = (r2 � p2 � q2) + q0;
h5 = q1;
h6 = q2.

Example: size-4 poly Karatsuba.

Start with size 2:

F = F0 + F1x, G = G0 + G1x,

H0 = F0G0, H2 = F1G1,

H1 = (F0+F1)(G0+G1)�H0�H2,

) FG = H0 + H1x + H2x2.

Substitute x = t2 etc.:

F = f0 + f1t + f2t2 + f3t3,
G = f0 + f1t + f2t2 + f3t3,
H0 = (f0 + f1t)(g0 + g1t),
H2 = (f2 + f3t)(g2 + g3t),
H1 = (f0 + f2 + (f1 + f3)t) �

(g0 + g2 + (g1 + g3)t)
�H0 �H2

) FG = H0 + H1t2 + H2t4.

Initial linear computation:

f0 + f2; f1 + f3; g0 + g2; g1 + g3;

algebraic complexity 4.

Three size-2 mults producing

H0 = p0 + p1t + p2t2;
H2 = q0 + q1t + q2t2;
H0 + H1 + H2 = r0 + r1t + r2t2.
Final linear reconstruction:

H1 = (r0 � p0 � q0) +

(r1 � p1 � q1)t +

(r2 � p2 � q2)t2,
algebraic complexity 6;

FG = H0 + H1t2 + H2t4,
algebraic complexity 2.

Let’s look more closely

at the reconstruction:

h0 = p0;

h1 = p1;

h2 = p2 + (r0 � p0 � q0);
h3 = (r1 � p1 � q1);
h4 = (r2 � p2 � q2) + q0;
h5 = q1;
h6 = q2.

Example: size-4 poly Karatsuba.

Start with size 2:

F = F0 + F1x, G = G0 + G1x,

H0 = F0G0, H2 = F1G1,

H1 = (F0+F1)(G0+G1)�H0�H2,

) FG = H0 + H1x + H2x2.

Substitute x = t2 etc.:

F = f0 + f1t + f2t2 + f3t3,
G = f0 + f1t + f2t2 + f3t3,
H0 = (f0 + f1t)(g0 + g1t),
H2 = (f2 + f3t)(g2 + g3t),
H1 = (f0 + f2 + (f1 + f3)t) �

(g0 + g2 + (g1 + g3)t)
�H0 �H2

) FG = H0 + H1t2 + H2t4.

Initial linear computation:

f0 + f2; f1 + f3; g0 + g2; g1 + g3;

algebraic complexity 4.

Three size-2 mults producing

H0 = p0 + p1t + p2t2;
H2 = q0 + q1t + q2t2;
H0 + H1 + H2 = r0 + r1t + r2t2.
Final linear reconstruction:

H1 = (r0 � p0 � q0) +

(r1 � p1 � q1)t +

(r2 � p2 � q2)t2,
algebraic complexity 6;

FG = H0 + H1t2 + H2t4,
algebraic complexity 2.

Let’s look more closely

at the reconstruction:

h0 = p0;

h1 = p1;

h2 = p2 + (r0 � p0 � q0);
h3 = (r1 � p1 � q1);
h4 = (r2 � p2 � q2) + q0;
h5 = q1;
h6 = q2.

Initial linear computation:

f0 + f2; f1 + f3; g0 + g2; g1 + g3;

algebraic complexity 4.

Three size-2 mults producing

H0 = p0 + p1t + p2t2;
H2 = q0 + q1t + q2t2;
H0 + H1 + H2 = r0 + r1t + r2t2.
Final linear reconstruction:

H1 = (r0 � p0 � q0) +

(r1 � p1 � q1)t +

(r2 � p2 � q2)t2,
algebraic complexity 6;

FG = H0 + H1t2 + H2t4,
algebraic complexity 2.

Let’s look more closely

at the reconstruction:

h0 = p0;

h1 = p1;

h2 = p2 + (r0 � p0 � q0);
h3 = (r1 � p1 � q1);
h4 = (r2 � p2 � q2) + q0;
h5 = q1;
h6 = q2.

Initial linear computation:

f0 + f2; f1 + f3; g0 + g2; g1 + g3;

algebraic complexity 4.

Three size-2 mults producing

H0 = p0 + p1t + p2t2;
H2 = q0 + q1t + q2t2;
H0 + H1 + H2 = r0 + r1t + r2t2.
Final linear reconstruction:

H1 = (r0 � p0 � q0) +

(r1 � p1 � q1)t +

(r2 � p2 � q2)t2,
algebraic complexity 6;

FG = H0 + H1t2 + H2t4,
algebraic complexity 2.

Let’s look more closely

at the reconstruction:

h0 = p0;

h1 = p1;

h2 = p2 + (r0 � p0 � q0);
h3 = (r1 � p1 � q1);
h4 = (r2 � p2 � q2) + q0;
h5 = q1;
h6 = q2.
Can observe manually

that p2 � q0 is repeated.

See, e.g., 2000 Bernstein.

Initial linear computation:

f0 + f2; f1 + f3; g0 + g2; g1 + g3;

algebraic complexity 4.

Three size-2 mults producing

H0 = p0 + p1t + p2t2;
H2 = q0 + q1t + q2t2;
H0 + H1 + H2 = r0 + r1t + r2t2.
Final linear reconstruction:

H1 = (r0 � p0 � q0) +

(r1 � p1 � q1)t +

(r2 � p2 � q2)t2,
algebraic complexity 6;

FG = H0 + H1t2 + H2t4,
algebraic complexity 2.

Let’s look more closely

at the reconstruction:

h0 = p0;

h1 = p1;

h2 = p2 + (r0 � p0 � q0);
h3 = (r1 � p1 � q1);
h4 = (r2 � p2 � q2) + q0;
h5 = q1;
h6 = q2.
Can observe manually

that p2 � q0 is repeated.

See, e.g., 2000 Bernstein.

Some addition-chain algorithms

will automatically

find this speedup.

Consider, e.g., greedy additive

CSE algorithm from 1997 Paar:

� find input pair i0; i1
with most popular i0 � i1;
� compute i0 � i1;
� simplify using i0 � i1;
� repeat.

This algorithm would have

automatically found p2 � q0
inside Karatsuba reconstruction.

Initial linear computation:

f0 + f2; f1 + f3; g0 + g2; g1 + g3;

algebraic complexity 4.

Three size-2 mults producing

H0 = p0 + p1t + p2t2;
H2 = q0 + q1t + q2t2;
H0 + H1 + H2 = r0 + r1t + r2t2.
Final linear reconstruction:

H1 = (r0 � p0 � q0) +

(r1 � p1 � q1)t +

(r2 � p2 � q2)t2,
algebraic complexity 6;

FG = H0 + H1t2 + H2t4,
algebraic complexity 2.

Let’s look more closely

at the reconstruction:

h0 = p0;

h1 = p1;

h2 = p2 + (r0 � p0 � q0);
h3 = (r1 � p1 � q1);
h4 = (r2 � p2 � q2) + q0;
h5 = q1;
h6 = q2.
Can observe manually

that p2 � q0 is repeated.

See, e.g., 2000 Bernstein.

Some addition-chain algorithms

will automatically

find this speedup.

Consider, e.g., greedy additive

CSE algorithm from 1997 Paar:

� find input pair i0; i1
with most popular i0 � i1;
� compute i0 � i1;
� simplify using i0 � i1;
� repeat.

This algorithm would have

automatically found p2 � q0
inside Karatsuba reconstruction.

Initial linear computation:

f0 + f2; f1 + f3; g0 + g2; g1 + g3;

algebraic complexity 4.

Three size-2 mults producing

H0 = p0 + p1t + p2t2;
H2 = q0 + q1t + q2t2;
H0 + H1 + H2 = r0 + r1t + r2t2.
Final linear reconstruction:

H1 = (r0 � p0 � q0) +

(r1 � p1 � q1)t +

(r2 � p2 � q2)t2,
algebraic complexity 6;

FG = H0 + H1t2 + H2t4,
algebraic complexity 2.

Let’s look more closely

at the reconstruction:

h0 = p0;

h1 = p1;

h2 = p2 + (r0 � p0 � q0);
h3 = (r1 � p1 � q1);
h4 = (r2 � p2 � q2) + q0;
h5 = q1;
h6 = q2.
Can observe manually

that p2 � q0 is repeated.

See, e.g., 2000 Bernstein.

Some addition-chain algorithms

will automatically

find this speedup.

Consider, e.g., greedy additive

CSE algorithm from 1997 Paar:

� find input pair i0; i1
with most popular i0 � i1;
� compute i0 � i1;
� simplify using i0 � i1;
� repeat.

This algorithm would have

automatically found p2 � q0
inside Karatsuba reconstruction.

Let’s look more closely

at the reconstruction:

h0 = p0;

h1 = p1;

h2 = p2 + (r0 � p0 � q0);
h3 = (r1 � p1 � q1);
h4 = (r2 � p2 � q2) + q0;
h5 = q1;
h6 = q2.
Can observe manually

that p2 � q0 is repeated.

See, e.g., 2000 Bernstein.

Some addition-chain algorithms

will automatically

find this speedup.

Consider, e.g., greedy additive

CSE algorithm from 1997 Paar:

� find input pair i0; i1
with most popular i0 � i1;
� compute i0 � i1;
� simplify using i0 � i1;
� repeat.

This algorithm would have

automatically found p2 � q0
inside Karatsuba reconstruction.

Let’s look more closely

at the reconstruction:

h0 = p0;

h1 = p1;

h2 = p2 + (r0 � p0 � q0);
h3 = (r1 � p1 � q1);
h4 = (r2 � p2 � q2) + q0;
h5 = q1;
h6 = q2.
Can observe manually

that p2 � q0 is repeated.

See, e.g., 2000 Bernstein.

Some addition-chain algorithms

will automatically

find this speedup.

Consider, e.g., greedy additive

CSE algorithm from 1997 Paar:

� find input pair i0; i1
with most popular i0 � i1;
� compute i0 � i1;
� simplify using i0 � i1;
� repeat.

This algorithm would have

automatically found p2 � q0
inside Karatsuba reconstruction.

Today’s algorithm: “xor largest.”

Start with the matrix mod 2

for the desired linear map.

h0: 100000000

h1: 010000000

h2: 101100100

h3: 010010010

h4: 001101001

h5: 000010000

h6: 000001000

Each row has coefficients of

p0; p1; p2; q0; q1; q2; r0; r1; r2.

Let’s look more closely

at the reconstruction:

h0 = p0;

h1 = p1;

h2 = p2 + (r0 � p0 � q0);
h3 = (r1 � p1 � q1);
h4 = (r2 � p2 � q2) + q0;
h5 = q1;
h6 = q2.
Can observe manually

that p2 � q0 is repeated.

See, e.g., 2000 Bernstein.

Some addition-chain algorithms

will automatically

find this speedup.

Consider, e.g., greedy additive

CSE algorithm from 1997 Paar:

� find input pair i0; i1
with most popular i0 � i1;
� compute i0 � i1;
� simplify using i0 � i1;
� repeat.

This algorithm would have

automatically found p2 � q0
inside Karatsuba reconstruction.

Today’s algorithm: “xor largest.”

Start with the matrix mod 2

for the desired linear map.

h0: 100000000

h1: 010000000

h2: 101100100

h3: 010010010

h4: 001101001

h5: 000010000

h6: 000001000

Each row has coefficients of

p0; p1; p2; q0; q1; q2; r0; r1; r2.

Let’s look more closely

at the reconstruction:

h0 = p0;

h1 = p1;

h2 = p2 + (r0 � p0 � q0);
h3 = (r1 � p1 � q1);
h4 = (r2 � p2 � q2) + q0;
h5 = q1;
h6 = q2.
Can observe manually

that p2 � q0 is repeated.

See, e.g., 2000 Bernstein.

Some addition-chain algorithms

will automatically

find this speedup.

Consider, e.g., greedy additive

CSE algorithm from 1997 Paar:

� find input pair i0; i1
with most popular i0 � i1;
� compute i0 � i1;
� simplify using i0 � i1;
� repeat.

This algorithm would have

automatically found p2 � q0
inside Karatsuba reconstruction.

Today’s algorithm: “xor largest.”

Start with the matrix mod 2

for the desired linear map.

h0: 100000000

h1: 010000000

h2: 101100100

h3: 010010010

h4: 001101001

h5: 000010000

h6: 000001000

Each row has coefficients of

p0; p1; p2; q0; q1; q2; r0; r1; r2.

Some addition-chain algorithms

will automatically

find this speedup.

Consider, e.g., greedy additive

CSE algorithm from 1997 Paar:

� find input pair i0; i1
with most popular i0 � i1;
� compute i0 � i1;
� simplify using i0 � i1;
� repeat.

This algorithm would have

automatically found p2 � q0
inside Karatsuba reconstruction.

Today’s algorithm: “xor largest.”

Start with the matrix mod 2

for the desired linear map.

h0: 100000000

h1: 010000000

h2: 101100100

h3: 010010010

h4: 001101001

h5: 000010000

h6: 000001000

Each row has coefficients of

p0; p1; p2; q0; q1; q2; r0; r1; r2.

Some addition-chain algorithms

will automatically

find this speedup.

Consider, e.g., greedy additive

CSE algorithm from 1997 Paar:

� find input pair i0; i1
with most popular i0 � i1;
� compute i0 � i1;
� simplify using i0 � i1;
� repeat.

This algorithm would have

automatically found p2 � q0
inside Karatsuba reconstruction.

Today’s algorithm: “xor largest.”

Start with the matrix mod 2

for the desired linear map.

h0: 100000000

h1: 010000000

h2: 101100100

h3: 010010010

h4: 001101001

h5: 000010000

h6: 000001000

Each row has coefficients of

p0; p1; p2; q0; q1; q2; r0; r1; r2.

Replace largest row

by its xor with

second-largest row.

100000000

010000000

001100100
010010010

001101001

000010000

000001000

Recursively compute this,

and finish with one xor.

Some addition-chain algorithms

will automatically

find this speedup.

Consider, e.g., greedy additive

CSE algorithm from 1997 Paar:

� find input pair i0; i1
with most popular i0 � i1;
� compute i0 � i1;
� simplify using i0 � i1;
� repeat.

This algorithm would have

automatically found p2 � q0
inside Karatsuba reconstruction.

Today’s algorithm: “xor largest.”

Start with the matrix mod 2

for the desired linear map.

h0: 100000000

h1: 010000000

h2: 101100100

h3: 010010010

h4: 001101001

h5: 000010000

h6: 000001000

Each row has coefficients of

p0; p1; p2; q0; q1; q2; r0; r1; r2.

Replace largest row

by its xor with

second-largest row.

100000000

010000000

001100100
010010010

001101001

000010000

000001000

Recursively compute this,

and finish with one xor.

Some addition-chain algorithms

will automatically

find this speedup.

Consider, e.g., greedy additive

CSE algorithm from 1997 Paar:

� find input pair i0; i1
with most popular i0 � i1;
� compute i0 � i1;
� simplify using i0 � i1;
� repeat.

This algorithm would have

automatically found p2 � q0
inside Karatsuba reconstruction.

Today’s algorithm: “xor largest.”

Start with the matrix mod 2

for the desired linear map.

h0: 100000000

h1: 010000000

h2: 101100100

h3: 010010010

h4: 001101001

h5: 000010000

h6: 000001000

Each row has coefficients of

p0; p1; p2; q0; q1; q2; r0; r1; r2.

Replace largest row

by its xor with

second-largest row.

100000000

010000000

001100100
010010010

001101001

000010000

000001000

Recursively compute this,

and finish with one xor.

Today’s algorithm: “xor largest.”

Start with the matrix mod 2

for the desired linear map.

h0: 100000000

h1: 010000000

h2: 101100100

h3: 010010010

h4: 001101001

h5: 000010000

h6: 000001000

Each row has coefficients of

p0; p1; p2; q0; q1; q2; r0; r1; r2.

Replace largest row

by its xor with

second-largest row.

100000000

010000000

001100100
010010010

001101001

000010000

000001000

Recursively compute this,

and finish with one xor.

Today’s algorithm: “xor largest.”

Start with the matrix mod 2

for the desired linear map.

h0: 100000000

h1: 010000000

h2: 101100100

h3: 010010010

h4: 001101001

h5: 000010000

h6: 000001000

Each row has coefficients of

p0; p1; p2; q0; q1; q2; r0; r1; r2.

Replace largest row

by its xor with

second-largest row.

100000000

010000000

001100100
010010010

001101001

000010000

000001000

Recursively compute this,

and finish with one xor.

If two largest rows

don’t have same first bit,

change largest row

by clearing first bit.

000000000
010000000

001100100

010010010

001101001

000010000

000001000

Recursively compute this,

and finish with one xor

(often just a copy).

Today’s algorithm: “xor largest.”

Start with the matrix mod 2

for the desired linear map.

h0: 100000000

h1: 010000000

h2: 101100100

h3: 010010010

h4: 001101001

h5: 000010000

h6: 000001000

Each row has coefficients of

p0; p1; p2; q0; q1; q2; r0; r1; r2.

Replace largest row

by its xor with

second-largest row.

100000000

010000000

001100100
010010010

001101001

000010000

000001000

Recursively compute this,

and finish with one xor.

If two largest rows

don’t have same first bit,

change largest row

by clearing first bit.

000000000
010000000

001100100

010010010

001101001

000010000

000001000

Recursively compute this,

and finish with one xor

(often just a copy).

Today’s algorithm: “xor largest.”

Start with the matrix mod 2

for the desired linear map.

h0: 100000000

h1: 010000000

h2: 101100100

h3: 010010010

h4: 001101001

h5: 000010000

h6: 000001000

Each row has coefficients of

p0; p1; p2; q0; q1; q2; r0; r1; r2.

Replace largest row

by its xor with

second-largest row.

100000000

010000000

001100100
010010010

001101001

000010000

000001000

Recursively compute this,

and finish with one xor.

If two largest rows

don’t have same first bit,

change largest row

by clearing first bit.

000000000
010000000

001100100

010010010

001101001

000010000

000001000

Recursively compute this,

and finish with one xor

(often just a copy).

Replace largest row

by its xor with

second-largest row.

100000000

010000000

001100100
010010010

001101001

000010000

000001000

Recursively compute this,

and finish with one xor.

If two largest rows

don’t have same first bit,

change largest row

by clearing first bit.

000000000
010000000

001100100

010010010

001101001

000010000

000001000

Recursively compute this,

and finish with one xor

(often just a copy).

Replace largest row

by its xor with

second-largest row.

100000000

010000000

001100100
010010010

001101001

000010000

000001000

Recursively compute this,

and finish with one xor.

If two largest rows

don’t have same first bit,

change largest row

by clearing first bit.

000000000
010000000

001100100

010010010

001101001

000010000

000001000

Recursively compute this,

and finish with one xor

(often just a copy).

Continue in the same way:

100000000

010000000

101100100

010010010

001101001

000010000

000001000

(starting matrix again)

Replace largest row

by its xor with

second-largest row.

100000000

010000000

001100100
010010010

001101001

000010000

000001000

Recursively compute this,

and finish with one xor.

If two largest rows

don’t have same first bit,

change largest row

by clearing first bit.

000000000
010000000

001100100

010010010

001101001

000010000

000001000

Recursively compute this,

and finish with one xor

(often just a copy).

Continue in the same way:

100000000

010000000

101100100

010010010

001101001

000010000

000001000

(starting matrix again)

Replace largest row

by its xor with

second-largest row.

100000000

010000000

001100100
010010010

001101001

000010000

000001000

Recursively compute this,

and finish with one xor.

If two largest rows

don’t have same first bit,

change largest row

by clearing first bit.

000000000
010000000

001100100

010010010

001101001

000010000

000001000

Recursively compute this,

and finish with one xor

(often just a copy).

Continue in the same way:

100000000

010000000

101100100

010010010

001101001

000010000

000001000

(starting matrix again)

If two largest rows

don’t have same first bit,

change largest row

by clearing first bit.

000000000
010000000

001100100

010010010

001101001

000010000

000001000

Recursively compute this,

and finish with one xor

(often just a copy).

Continue in the same way:

100000000

010000000

101100100

010010010

001101001

000010000

000001000

(starting matrix again)

If two largest rows

don’t have same first bit,

change largest row

by clearing first bit.

000000000
010000000

001100100

010010010

001101001

000010000

000001000

Recursively compute this,

and finish with one xor

(often just a copy).

Continue in the same way:

100000000

010000000

001100100
010010010

001101001

000010000

000001000

plus 1 xor.

If two largest rows

don’t have same first bit,

change largest row

by clearing first bit.

000000000
010000000

001100100

010010010

001101001

000010000

000001000

Recursively compute this,

and finish with one xor

(often just a copy).

Continue in the same way:

000000000
010000000

001100100

010010010

001101001

000010000

000001000

plus 1 xor, 1 input load.

If two largest rows

don’t have same first bit,

change largest row

by clearing first bit.

000000000
010000000

001100100

010010010

001101001

000010000

000001000

Recursively compute this,

and finish with one xor

(often just a copy).

Continue in the same way:

000000000

010000000

001100100

000010010
001101001

000010000

000001000

plus 2 xors, 1 input load.

If two largest rows

don’t have same first bit,

change largest row

by clearing first bit.

000000000
010000000

001100100

010010010

001101001

000010000

000001000

Recursively compute this,

and finish with one xor

(often just a copy).

Continue in the same way:

000000000

000000000
001100100

000010010

001101001

000010000

000001000

plus 2 xors, 2 input loads.

If two largest rows

don’t have same first bit,

change largest row

by clearing first bit.

000000000
010000000

001100100

010010010

001101001

000010000

000001000

Recursively compute this,

and finish with one xor

(often just a copy).

Continue in the same way:

000000000

000000000

001100100

000010010

000001101
000010000

000001000

plus 3 xors, 2 input loads.

If two largest rows

don’t have same first bit,

change largest row

by clearing first bit.

000000000
010000000

001100100

010010010

001101001

000010000

000001000

Recursively compute this,

and finish with one xor

(often just a copy).

Continue in the same way:

000000000

000000000

000100100
000010010

000001101

000010000

000001000

plus 4 xors, 3 input loads.

If two largest rows

don’t have same first bit,

change largest row

by clearing first bit.

000000000
010000000

001100100

010010010

001101001

000010000

000001000

Recursively compute this,

and finish with one xor

(often just a copy).

Continue in the same way:

000000000

000000000

000000100
000010010

000001101

000010000

000001000

plus 5 xors, 4 input loads.

If two largest rows

don’t have same first bit,

change largest row

by clearing first bit.

000000000
010000000

001100100

010010010

001101001

000010000

000001000

Recursively compute this,

and finish with one xor

(often just a copy).

Continue in the same way:

000000000

000000000

000000100

000000010
000001101

000010000

000001000

plus 6 xors, 4 input loads.

If two largest rows

don’t have same first bit,

change largest row

by clearing first bit.

000000000
010000000

001100100

010010010

001101001

000010000

000001000

Recursively compute this,

and finish with one xor

(often just a copy).

Continue in the same way:

000000000

000000000

000000100

000000010

000001101

000000000
000001000

plus 6 xors, 5 input loads.

If two largest rows

don’t have same first bit,

change largest row

by clearing first bit.

000000000
010000000

001100100

010010010

001101001

000010000

000001000

Recursively compute this,

and finish with one xor

(often just a copy).

Continue in the same way:

000000000

000000000

000000100

000000010

000000101
000000000

000001000

plus 7 xors, 5 input loads.

If two largest rows

don’t have same first bit,

change largest row

by clearing first bit.

000000000
010000000

001100100

010010010

001101001

000010000

000001000

Recursively compute this,

and finish with one xor

(often just a copy).

Continue in the same way:

000000000

000000000

000000100

000000010

000000101

000000000

000000000
plus 7 xors, 6 input loads.

If two largest rows

don’t have same first bit,

change largest row

by clearing first bit.

000000000
010000000

001100100

010010010

001101001

000010000

000001000

Recursively compute this,

and finish with one xor

(often just a copy).

Continue in the same way:

000000000

000000000

000000100

000000010

000000001
000000000

000000000

plus 8 xors, 6 input loads.

If two largest rows

don’t have same first bit,

change largest row

by clearing first bit.

000000000
010000000

001100100

010010010

001101001

000010000

000001000

Recursively compute this,

and finish with one xor

(often just a copy).

Continue in the same way:

000000000

000000000

000000000
000000010

000000001

000000000

000000000

plus 8 xors, 7 input loads.

If two largest rows

don’t have same first bit,

change largest row

by clearing first bit.

000000000
010000000

001100100

010010010

001101001

000010000

000001000

Recursively compute this,

and finish with one xor

(often just a copy).

Continue in the same way:

000000000

000000000

000000000

000000000
000000001

000000000

000000000

plus 8 xors, 8 input loads.

If two largest rows

don’t have same first bit,

change largest row

by clearing first bit.

000000000
010000000

001100100

010010010

001101001

000010000

000001000

Recursively compute this,

and finish with one xor

(often just a copy).

Continue in the same way:

000000000

000000000

000000000

000000000

000000000
000000000

000000000

plus 8 xors, 9 input loads.

If two largest rows

don’t have same first bit,

change largest row

by clearing first bit.

000000000
010000000

001100100

010010010

001101001

000010000

000001000

Recursively compute this,

and finish with one xor

(often just a copy).

Continue in the same way:

000000000

000000000

000000000

000000000

000000000
000000000

000000000

plus 8 xors, 9 input loads.

“Is this supposed to be

an interesting algorithm?”

If two largest rows

don’t have same first bit,

change largest row

by clearing first bit.

000000000
010000000

001100100

010010010

001101001

000010000

000001000

Recursively compute this,

and finish with one xor

(often just a copy).

Continue in the same way:

000000000

000000000

000000000

000000000

000000000
000000000

000000000

plus 8 xors, 9 input loads.

“Is this supposed to be

an interesting algorithm?”

Another example:

000100000

000010000

100101100

010010010

001001101

000000010

000000001

Same matrix, but inputs

in a different order:

first r’s (used once each),

then p’s (used twice each),

then q’s (used twice each).

If two largest rows

don’t have same first bit,

change largest row

by clearing first bit.

000000000
010000000

001100100

010010010

001101001

000010000

000001000

Recursively compute this,

and finish with one xor

(often just a copy).

Continue in the same way:

000000000

000000000

000000000

000000000

000000000
000000000

000000000

plus 8 xors, 9 input loads.

“Is this supposed to be

an interesting algorithm?”

Another example:

000100000

000010000

100101100

010010010

001001101

000000010

000000001

Same matrix, but inputs

in a different order:

first r’s (used once each),

then p’s (used twice each),

then q’s (used twice each).

If two largest rows

don’t have same first bit,

change largest row

by clearing first bit.

000000000
010000000

001100100

010010010

001101001

000010000

000001000

Recursively compute this,

and finish with one xor

(often just a copy).

Continue in the same way:

000000000

000000000

000000000

000000000

000000000
000000000

000000000

plus 8 xors, 9 input loads.

“Is this supposed to be

an interesting algorithm?”

Another example:

000100000

000010000

100101100

010010010

001001101

000000010

000000001

Same matrix, but inputs

in a different order:

first r’s (used once each),

then p’s (used twice each),

then q’s (used twice each).

Continue in the same way:

000000000

000000000

000000000

000000000

000000000
000000000

000000000

plus 8 xors, 9 input loads.

“Is this supposed to be

an interesting algorithm?”

Another example:

000100000

000010000

100101100

010010010

001001101

000000010

000000001

Same matrix, but inputs

in a different order:

first r’s (used once each),

then p’s (used twice each),

then q’s (used twice each).

Continue in the same way:

000000000

000000000

000000000

000000000

000000000
000000000

000000000

plus 8 xors, 9 input loads.

“Is this supposed to be

an interesting algorithm?”

Another example:

000100000

000010000

000101100
010010010

001001101

000000010

000000001

plus 1 xor, 1 input load.

Continue in the same way:

000000000

000000000

000000000

000000000

000000000
000000000

000000000

plus 8 xors, 9 input loads.

“Is this supposed to be

an interesting algorithm?”

Another example:

000100000

000010000

000101100

000010010
001001101

000000010

000000001

plus 2 xors, 2 input loads.

Continue in the same way:

000000000

000000000

000000000

000000000

000000000
000000000

000000000

plus 8 xors, 9 input loads.

“Is this supposed to be

an interesting algorithm?”

Another example:

000100000

000010000

000101100

000010010

000001101
000000010

000000001

plus 3 xors, 3 input loads.

Continue in the same way:

000000000

000000000

000000000

000000000

000000000
000000000

000000000

plus 8 xors, 9 input loads.

“Is this supposed to be

an interesting algorithm?”

Another example:

000100000

000010000

000001100
000010010

000001101

000000010

000000001

plus 4 xors, 3 input loads.

Continue in the same way:

000000000

000000000

000000000

000000000

000000000
000000000

000000000

plus 8 xors, 9 input loads.

“Is this supposed to be

an interesting algorithm?”

Another example:

000000000
000010000

000001100

000010010

000001101

000000010

000000001

plus 4 xors, 4 input loads.

Continue in the same way:

000000000

000000000

000000000

000000000

000000000
000000000

000000000

plus 8 xors, 9 input loads.

“Is this supposed to be

an interesting algorithm?”

Another example:

000000000

000010000

000001100

000000010
000001101

000000010

000000001

plus 5 xors, 4 input loads.

Continue in the same way:

000000000

000000000

000000000

000000000

000000000
000000000

000000000

plus 8 xors, 9 input loads.

“Is this supposed to be

an interesting algorithm?”

Another example:

000000000

000000000
000001100

000000010

000001101

000000010

000000001

plus 5 xors, 5 input loads.

Continue in the same way:

000000000

000000000

000000000

000000000

000000000
000000000

000000000

plus 8 xors, 9 input loads.

“Is this supposed to be

an interesting algorithm?”

Another example:

000000000

000000000

000001100

000000010

000000001
000000010

000000001

plus 6 xors, 5 input loads.

Continue in the same way:

000000000

000000000

000000000

000000000

000000000
000000000

000000000

plus 8 xors, 9 input loads.

“Is this supposed to be

an interesting algorithm?”

Another example:

000000000

000000000

000000100
000000010

000000001

000000010

000000001

plus 7 xors, 6 input loads.

Continue in the same way:

000000000

000000000

000000000

000000000

000000000
000000000

000000000

plus 8 xors, 9 input loads.

“Is this supposed to be

an interesting algorithm?”

Another example:

000000000

000000000

000000000
000000010

000000001

000000010

000000001

plus 7 xors, 7 input loads.

Continue in the same way:

000000000

000000000

000000000

000000000

000000000
000000000

000000000

plus 8 xors, 9 input loads.

“Is this supposed to be

an interesting algorithm?”

Another example:

000000000

000000000

000000000

000000000
000000001

000000010

000000001

plus 7 xors, 7 input loads.

Continue in the same way:

000000000

000000000

000000000

000000000

000000000
000000000

000000000

plus 8 xors, 9 input loads.

“Is this supposed to be

an interesting algorithm?”

Another example:

000000000

000000000

000000000

000000000

000000001

000000000
000000001

plus 7 xors, 8 input loads.

Continue in the same way:

000000000

000000000

000000000

000000000

000000000
000000000

000000000

plus 8 xors, 9 input loads.

“Is this supposed to be

an interesting algorithm?”

Another example:

000000000

000000000

000000000

000000000

000000000
000000000

000000001

plus 7 xors, 8 input loads.

Continue in the same way:

000000000

000000000

000000000

000000000

000000000
000000000

000000000

plus 8 xors, 9 input loads.

“Is this supposed to be

an interesting algorithm?”

Another example:

000000000

000000000

000000000

000000000

000000000

000000000

000000000
plus 7 xors, 9 input loads.

Algorithm found the speedup.

Continue in the same way:

000000000

000000000

000000000

000000000

000000000
000000000

000000000

plus 8 xors, 9 input loads.

“Is this supposed to be

an interesting algorithm?”

Another example:

000000000

000000000

000000000

000000000

000000000

000000000

000000000
plus 7 xors, 9 input loads.

Algorithm found the speedup.

Also has other useful features.

Continue in the same way:

000000000

000000000

000000000

000000000

000000000
000000000

000000000

plus 8 xors, 9 input loads.

“Is this supposed to be

an interesting algorithm?”

Another example:

000000000

000000000

000000000

000000000

000000000

000000000

000000000
plus 7 xors, 9 input loads.

Algorithm found the speedup.

Also has other useful features.

Memory friendliness:

Algorithm writes only

to the output registers.

No temporary storage.

n inputs, n outputs:

total 2n registers

with 0 loads, 0 stores.

Or n + 1 registers

with n loads, 0 stores:

each input is read only once.

Or n registers

with n loads, 0 stores,

if platform has load-xor insn.

Continue in the same way:

000000000

000000000

000000000

000000000

000000000
000000000

000000000

plus 8 xors, 9 input loads.

“Is this supposed to be

an interesting algorithm?”

Another example:

000000000

000000000

000000000

000000000

000000000

000000000

000000000
plus 7 xors, 9 input loads.

Algorithm found the speedup.

Also has other useful features.

Memory friendliness:

Algorithm writes only

to the output registers.

No temporary storage.

n inputs, n outputs:

total 2n registers

with 0 loads, 0 stores.

Or n + 1 registers

with n loads, 0 stores:

each input is read only once.

Or n registers

with n loads, 0 stores,

if platform has load-xor insn.

Continue in the same way:

000000000

000000000

000000000

000000000

000000000
000000000

000000000

plus 8 xors, 9 input loads.

“Is this supposed to be

an interesting algorithm?”

Another example:

000000000

000000000

000000000

000000000

000000000

000000000

000000000
plus 7 xors, 9 input loads.

Algorithm found the speedup.

Also has other useful features.

Memory friendliness:

Algorithm writes only

to the output registers.

No temporary storage.

n inputs, n outputs:

total 2n registers

with 0 loads, 0 stores.

Or n + 1 registers

with n loads, 0 stores:

each input is read only once.

Or n registers

with n loads, 0 stores,

if platform has load-xor insn.

Another example:

000000000

000000000

000000000

000000000

000000000

000000000

000000000
plus 7 xors, 9 input loads.

Algorithm found the speedup.

Also has other useful features.

Memory friendliness:

Algorithm writes only

to the output registers.

No temporary storage.

n inputs, n outputs:

total 2n registers

with 0 loads, 0 stores.

Or n + 1 registers

with n loads, 0 stores:

each input is read only once.

Or n registers

with n loads, 0 stores,

if platform has load-xor insn.

Another example:

000000000

000000000

000000000

000000000

000000000

000000000

000000000
plus 7 xors, 9 input loads.

Algorithm found the speedup.

Also has other useful features.

Memory friendliness:

Algorithm writes only

to the output registers.

No temporary storage.

n inputs, n outputs:

total 2n registers

with 0 loads, 0 stores.

Or n + 1 registers

with n loads, 0 stores:

each input is read only once.

Or n registers

with n loads, 0 stores,

if platform has load-xor insn.

Two-operand friendliness:

Platform with a a� b
but without a b�

uses only n extra copies.

Naive column sweep also uses

n + 1 registers, n loads,

but usually many more xors.

Input partitioning

(e.g., 1956 Lupanov) uses

somewhat more xors, copies;

somewhat more registers.

Greedy additive CSE uses

somewhat fewer xors but

many more copies, registers.

Another example:

000000000

000000000

000000000

000000000

000000000

000000000

000000000
plus 7 xors, 9 input loads.

Algorithm found the speedup.

Also has other useful features.

Memory friendliness:

Algorithm writes only

to the output registers.

No temporary storage.

n inputs, n outputs:

total 2n registers

with 0 loads, 0 stores.

Or n + 1 registers

with n loads, 0 stores:

each input is read only once.

Or n registers

with n loads, 0 stores,

if platform has load-xor insn.

Two-operand friendliness:

Platform with a a� b
but without a b�

uses only n extra copies.

Naive column sweep also uses

n + 1 registers, n loads,

but usually many more xors.

Input partitioning

(e.g., 1956 Lupanov) uses

somewhat more xors, copies;

somewhat more registers.

Greedy additive CSE uses

somewhat fewer xors but

many more copies, registers.

Another example:

000000000

000000000

000000000

000000000

000000000

000000000

000000000
plus 7 xors, 9 input loads.

Algorithm found the speedup.

Also has other useful features.

Memory friendliness:

Algorithm writes only

to the output registers.

No temporary storage.

n inputs, n outputs:

total 2n registers

with 0 loads, 0 stores.

Or n + 1 registers

with n loads, 0 stores:

each input is read only once.

Or n registers

with n loads, 0 stores,

if platform has load-xor insn.

Two-operand friendliness:

Platform with a a� b
but without a b�

uses only n extra copies.

Naive column sweep also uses

n + 1 registers, n loads,

but usually many more xors.

Input partitioning

(e.g., 1956 Lupanov) uses

somewhat more xors, copies;

somewhat more registers.

Greedy additive CSE uses

somewhat fewer xors but

many more copies, registers.

Memory friendliness:

Algorithm writes only

to the output registers.

No temporary storage.

n inputs, n outputs:

total 2n registers

with 0 loads, 0 stores.

Or n + 1 registers

with n loads, 0 stores:

each input is read only once.

Or n registers

with n loads, 0 stores,

if platform has load-xor insn.

Two-operand friendliness:

Platform with a a� b
but without a b�

uses only n extra copies.

Naive column sweep also uses

n + 1 registers, n loads,

but usually many more xors.

Input partitioning

(e.g., 1956 Lupanov) uses

somewhat more xors, copies;

somewhat more registers.

Greedy additive CSE uses

somewhat fewer xors but

many more copies, registers.

Memory friendliness:

Algorithm writes only

to the output registers.

No temporary storage.

n inputs, n outputs:

total 2n registers

with 0 loads, 0 stores.

Or n + 1 registers

with n loads, 0 stores:

each input is read only once.

Or n registers

with n loads, 0 stores,

if platform has load-xor insn.

Two-operand friendliness:

Platform with a a� b
but without a b�

uses only n extra copies.

Naive column sweep also uses

n + 1 registers, n loads,

but usually many more xors.

Input partitioning

(e.g., 1956 Lupanov) uses

somewhat more xors, copies;

somewhat more registers.

Greedy additive CSE uses

somewhat fewer xors but

many more copies, registers.

For m inputs and n outputs,

average n�m matrix:

The xor-largest algorithm uses

�mn= lgn two-operand xors;

n copies; m loads; n + 1 regs.

Memory friendliness:

Algorithm writes only

to the output registers.

No temporary storage.

n inputs, n outputs:

total 2n registers

with 0 loads, 0 stores.

Or n + 1 registers

with n loads, 0 stores:

each input is read only once.

Or n registers

with n loads, 0 stores,

if platform has load-xor insn.

Two-operand friendliness:

Platform with a a� b
but without a b�

uses only n extra copies.

Naive column sweep also uses

n + 1 registers, n loads,

but usually many more xors.

Input partitioning

(e.g., 1956 Lupanov) uses

somewhat more xors, copies;

somewhat more registers.

Greedy additive CSE uses

somewhat fewer xors but

many more copies, registers.

For m inputs and n outputs,

average n�m matrix:

The xor-largest algorithm uses

�mn= lgn two-operand xors;

n copies; m loads; n + 1 regs.

Memory friendliness:

Algorithm writes only

to the output registers.

No temporary storage.

n inputs, n outputs:

total 2n registers

with 0 loads, 0 stores.

Or n + 1 registers

with n loads, 0 stores:

each input is read only once.

Or n registers

with n loads, 0 stores,

if platform has load-xor insn.

Two-operand friendliness:

Platform with a a� b
but without a b�

uses only n extra copies.

Naive column sweep also uses

n + 1 registers, n loads,

but usually many more xors.

Input partitioning

(e.g., 1956 Lupanov) uses

somewhat more xors, copies;

somewhat more registers.

Greedy additive CSE uses

somewhat fewer xors but

many more copies, registers.

For m inputs and n outputs,

average n�m matrix:

The xor-largest algorithm uses

�mn= lgn two-operand xors;

n copies; m loads; n + 1 regs.

Two-operand friendliness:

Platform with a a� b
but without a b�

uses only n extra copies.

Naive column sweep also uses

n + 1 registers, n loads,

but usually many more xors.

Input partitioning

(e.g., 1956 Lupanov) uses

somewhat more xors, copies;

somewhat more registers.

Greedy additive CSE uses

somewhat fewer xors but

many more copies, registers.

For m inputs and n outputs,

average n�m matrix:

The xor-largest algorithm uses

�mn= lgn two-operand xors;

n copies; m loads; n + 1 regs.

Two-operand friendliness:

Platform with a a� b
but without a b�

uses only n extra copies.

Naive column sweep also uses

n + 1 registers, n loads,

but usually many more xors.

Input partitioning

(e.g., 1956 Lupanov) uses

somewhat more xors, copies;

somewhat more registers.

Greedy additive CSE uses

somewhat fewer xors but

many more copies, registers.

For m inputs and n outputs,

average n�m matrix:

The xor-largest algorithm uses

�mn= lgn two-operand xors;

n copies; m loads; n + 1 regs.

Pippenger’s algorithm uses

� mn= lgmn three-operand xors

but seems to need many regs.

Pippenger proved that

his algebraic complexity was

near optimal for most matrices

(at least without mod 2),

but didn’t consider regs,

two-operand complexity, etc.

Two-operand friendliness:

Platform with a a� b
but without a b�

uses only n extra copies.

Naive column sweep also uses

n + 1 registers, n loads,

but usually many more xors.

Input partitioning

(e.g., 1956 Lupanov) uses

somewhat more xors, copies;

somewhat more registers.

Greedy additive CSE uses

somewhat fewer xors but

many more copies, registers.

For m inputs and n outputs,

average n�m matrix:

The xor-largest algorithm uses

�mn= lgn two-operand xors;

n copies; m loads; n + 1 regs.

Pippenger’s algorithm uses

� mn= lgmn three-operand xors

but seems to need many regs.

Pippenger proved that

his algebraic complexity was

near optimal for most matrices

(at least without mod 2),

but didn’t consider regs,

two-operand complexity, etc.

Case study of benefits

produced by xor-largest:

131-bit conversion from

poly basis to normal basis.

“Random” 131� 131 matrix.

On Cell (� 1 xor per cycle,

128� � registers) bitsliced

code took � 9600 cycles.

Output of xor-largest:

code with only 3380 xors

fitting into 132 registers.

Schwabe tuned asm for Cell:

� 4000 cycles.

Two-operand friendliness:

Platform with a a� b
but without a b�

uses only n extra copies.

Naive column sweep also uses

n + 1 registers, n loads,

but usually many more xors.

Input partitioning

(e.g., 1956 Lupanov) uses

somewhat more xors, copies;

somewhat more registers.

Greedy additive CSE uses

somewhat fewer xors but

many more copies, registers.

For m inputs and n outputs,

average n�m matrix:

The xor-largest algorithm uses

�mn= lgn two-operand xors;

n copies; m loads; n + 1 regs.

Pippenger’s algorithm uses

� mn= lgmn three-operand xors

but seems to need many regs.

Pippenger proved that

his algebraic complexity was

near optimal for most matrices

(at least without mod 2),

but didn’t consider regs,

two-operand complexity, etc.

Case study of benefits

produced by xor-largest:

131-bit conversion from

poly basis to normal basis.

“Random” 131� 131 matrix.

On Cell (� 1 xor per cycle,

128� � registers) bitsliced

code took � 9600 cycles.

Output of xor-largest:

code with only 3380 xors

fitting into 132 registers.

Schwabe tuned asm for Cell:

� 4000 cycles.

Two-operand friendliness:

Platform with a a� b
but without a b�

uses only n extra copies.

Naive column sweep also uses

n + 1 registers, n loads,

but usually many more xors.

Input partitioning

(e.g., 1956 Lupanov) uses

somewhat more xors, copies;

somewhat more registers.

Greedy additive CSE uses

somewhat fewer xors but

many more copies, registers.

For m inputs and n outputs,

average n�m matrix:

The xor-largest algorithm uses

�mn= lgn two-operand xors;

n copies; m loads; n + 1 regs.

Pippenger’s algorithm uses

� mn= lgmn three-operand xors

but seems to need many regs.

Pippenger proved that

his algebraic complexity was

near optimal for most matrices

(at least without mod 2),

but didn’t consider regs,

two-operand complexity, etc.

Case study of benefits

produced by xor-largest:

131-bit conversion from

poly basis to normal basis.

“Random” 131� 131 matrix.

On Cell (� 1 xor per cycle,

128� � registers) bitsliced

code took � 9600 cycles.

Output of xor-largest:

code with only 3380 xors

fitting into 132 registers.

Schwabe tuned asm for Cell:

� 4000 cycles.

For m inputs and n outputs,

average n�m matrix:

The xor-largest algorithm uses

�mn= lgn two-operand xors;

n copies; m loads; n + 1 regs.

Pippenger’s algorithm uses

� mn= lgmn three-operand xors

but seems to need many regs.

Pippenger proved that

his algebraic complexity was

near optimal for most matrices

(at least without mod 2),

but didn’t consider regs,

two-operand complexity, etc.

Case study of benefits

produced by xor-largest:

131-bit conversion from

poly basis to normal basis.

“Random” 131� 131 matrix.

On Cell (� 1 xor per cycle,

128� � registers) bitsliced

code took � 9600 cycles.

Output of xor-largest:

code with only 3380 xors

fitting into 132 registers.

Schwabe tuned asm for Cell:

� 4000 cycles.

For m inputs and n outputs,

average n�m matrix:

The xor-largest algorithm uses

�mn= lgn two-operand xors;

n copies; m loads; n + 1 regs.

Pippenger’s algorithm uses

� mn= lgmn three-operand xors

but seems to need many regs.

Pippenger proved that

his algebraic complexity was

near optimal for most matrices

(at least without mod 2),

but didn’t consider regs,

two-operand complexity, etc.

Case study of benefits

produced by xor-largest:

131-bit conversion from

poly basis to normal basis.

“Random” 131� 131 matrix.

On Cell (� 1 xor per cycle,

128� � registers) bitsliced

code took � 9600 cycles.

Output of xor-largest:

code with only 3380 xors

fitting into 132 registers.

Schwabe tuned asm for Cell:

� 4000 cycles.

Inspiration: 1989 Bos–Coster.

000100000 = 32

000010000 = 16

100101100 = 300

010010010 = 146

001001101 = 77

000000010 = 2

000000001 = 1

Goal: Compute 32x, 16x,

300x, 146x, 77x, 2x, 1x.

For m inputs and n outputs,

average n�m matrix:

The xor-largest algorithm uses

�mn= lgn two-operand xors;

n copies; m loads; n + 1 regs.

Pippenger’s algorithm uses

� mn= lgmn three-operand xors

but seems to need many regs.

Pippenger proved that

his algebraic complexity was

near optimal for most matrices

(at least without mod 2),

but didn’t consider regs,

two-operand complexity, etc.

Case study of benefits

produced by xor-largest:

131-bit conversion from

poly basis to normal basis.

“Random” 131� 131 matrix.

On Cell (� 1 xor per cycle,

128� � registers) bitsliced

code took � 9600 cycles.

Output of xor-largest:

code with only 3380 xors

fitting into 132 registers.

Schwabe tuned asm for Cell:

� 4000 cycles.

Inspiration: 1989 Bos–Coster.

000100000 = 32

000010000 = 16

100101100 = 300

010010010 = 146

001001101 = 77

000000010 = 2

000000001 = 1

Goal: Compute 32x, 16x,

300x, 146x, 77x, 2x, 1x.

For m inputs and n outputs,

average n�m matrix:

The xor-largest algorithm uses

�mn= lgn two-operand xors;

n copies; m loads; n + 1 regs.

Pippenger’s algorithm uses

� mn= lgmn three-operand xors

but seems to need many regs.

Pippenger proved that

his algebraic complexity was

near optimal for most matrices

(at least without mod 2),

but didn’t consider regs,

two-operand complexity, etc.

Case study of benefits

produced by xor-largest:

131-bit conversion from

poly basis to normal basis.

“Random” 131� 131 matrix.

On Cell (� 1 xor per cycle,

128� � registers) bitsliced

code took � 9600 cycles.

Output of xor-largest:

code with only 3380 xors

fitting into 132 registers.

Schwabe tuned asm for Cell:

� 4000 cycles.

Inspiration: 1989 Bos–Coster.

000100000 = 32

000010000 = 16

100101100 = 300

010010010 = 146

001001101 = 77

000000010 = 2

000000001 = 1

Goal: Compute 32x, 16x,

300x, 146x, 77x, 2x, 1x.

Case study of benefits

produced by xor-largest:

131-bit conversion from

poly basis to normal basis.

“Random” 131� 131 matrix.

On Cell (� 1 xor per cycle,

128� � registers) bitsliced

code took � 9600 cycles.

Output of xor-largest:

code with only 3380 xors

fitting into 132 registers.

Schwabe tuned asm for Cell:

� 4000 cycles.

Inspiration: 1989 Bos–Coster.

000100000 = 32

000010000 = 16

100101100 = 300

010010010 = 146

001001101 = 77

000000010 = 2

000000001 = 1

Goal: Compute 32x, 16x,

300x, 146x, 77x, 2x, 1x.

Case study of benefits

produced by xor-largest:

131-bit conversion from

poly basis to normal basis.

“Random” 131� 131 matrix.

On Cell (� 1 xor per cycle,

128� � registers) bitsliced

code took � 9600 cycles.

Output of xor-largest:

code with only 3380 xors

fitting into 132 registers.

Schwabe tuned asm for Cell:

� 4000 cycles.

Inspiration: 1989 Bos–Coster.

000100000 = 32

000010000 = 16

100101100 = 300

010010010 = 146

001001101 = 77

000000010 = 2

000000001 = 1

Goal: Compute 32x, 16x,

300x, 146x, 77x, 2x, 1x.

Reduce largest row:

000100000 = 32

000010000 = 16

010011010 = 154
010010010 = 146

001001101 = 77

000000010 = 2

000000001 = 1

Integer subtraction

of 146 from 300.

Case study of benefits

produced by xor-largest:

131-bit conversion from

poly basis to normal basis.

“Random” 131� 131 matrix.

On Cell (� 1 xor per cycle,

128� � registers) bitsliced

code took � 9600 cycles.

Output of xor-largest:

code with only 3380 xors

fitting into 132 registers.

Schwabe tuned asm for Cell:

� 4000 cycles.

Inspiration: 1989 Bos–Coster.

000100000 = 32

000010000 = 16

100101100 = 300

010010010 = 146

001001101 = 77

000000010 = 2

000000001 = 1

Goal: Compute 32x, 16x,

300x, 146x, 77x, 2x, 1x.

Reduce largest row:

000100000 = 32

000010000 = 16

010011010 = 154
010010010 = 146

001001101 = 77

000000010 = 2

000000001 = 1

Integer subtraction

of 146 from 300.

Case study of benefits

produced by xor-largest:

131-bit conversion from

poly basis to normal basis.

“Random” 131� 131 matrix.

On Cell (� 1 xor per cycle,

128� � registers) bitsliced

code took � 9600 cycles.

Output of xor-largest:

code with only 3380 xors

fitting into 132 registers.

Schwabe tuned asm for Cell:

� 4000 cycles.

Inspiration: 1989 Bos–Coster.

000100000 = 32

000010000 = 16

100101100 = 300

010010010 = 146

001001101 = 77

000000010 = 2

000000001 = 1

Goal: Compute 32x, 16x,

300x, 146x, 77x, 2x, 1x.

Reduce largest row:

000100000 = 32

000010000 = 16

010011010 = 154
010010010 = 146

001001101 = 77

000000010 = 2

000000001 = 1

Integer subtraction

of 146 from 300.

Inspiration: 1989 Bos–Coster.

000100000 = 32

000010000 = 16

100101100 = 300

010010010 = 146

001001101 = 77

000000010 = 2

000000001 = 1

Goal: Compute 32x, 16x,

300x, 146x, 77x, 2x, 1x.

Reduce largest row:

000100000 = 32

000010000 = 16

010011010 = 154
010010010 = 146

001001101 = 77

000000010 = 2

000000001 = 1

Integer subtraction

of 146 from 300.

Inspiration: 1989 Bos–Coster.

000100000 = 32

000010000 = 16

100101100 = 300

010010010 = 146

001001101 = 77

000000010 = 2

000000001 = 1

Goal: Compute 32x, 16x,

300x, 146x, 77x, 2x, 1x.

Reduce largest row:

000100000 = 32

000010000 = 16

000001000 = 8
010010010 = 146

001001101 = 77

000000010 = 2

000000001 = 1

plus 2 additions.

Inspiration: 1989 Bos–Coster.

000100000 = 32

000010000 = 16

100101100 = 300

010010010 = 146

001001101 = 77

000000010 = 2

000000001 = 1

Goal: Compute 32x, 16x,

300x, 146x, 77x, 2x, 1x.

Reduce largest row:

000100000 = 32

000010000 = 16

000001000 = 8

001000101 = 69
001001101 = 77

000000010 = 2

000000001 = 1

plus 3 additions.

Inspiration: 1989 Bos–Coster.

000100000 = 32

000010000 = 16

100101100 = 300

010010010 = 146

001001101 = 77

000000010 = 2

000000001 = 1

Goal: Compute 32x, 16x,

300x, 146x, 77x, 2x, 1x.

Reduce largest row:

000100000 = 32

000010000 = 16

000001000 = 8

001000101 = 69

000001000 = 8
000000010 = 2

000000001 = 1

plus 4 additions.

Inspiration: 1989 Bos–Coster.

000100000 = 32

000010000 = 16

100101100 = 300

010010010 = 146

001001101 = 77

000000010 = 2

000000001 = 1

Goal: Compute 32x, 16x,

300x, 146x, 77x, 2x, 1x.

Reduce largest row:

000100000 = 32

000010000 = 16

000001000 = 8

000100101 = 37
000001000 = 8

000000010 = 2

000000001 = 1

plus 5 additions.

Inspiration: 1989 Bos–Coster.

000100000 = 32

000010000 = 16

100101100 = 300

010010010 = 146

001001101 = 77

000000010 = 2

000000001 = 1

Goal: Compute 32x, 16x,

300x, 146x, 77x, 2x, 1x.

Reduce largest row:

000100000 = 32

000010000 = 16

000001000 = 8

000000101 = 5
000001000 = 8

000000010 = 2

000000001 = 1

plus 6 additions.

Inspiration: 1989 Bos–Coster.

000100000 = 32

000010000 = 16

100101100 = 300

010010010 = 146

001001101 = 77

000000010 = 2

000000001 = 1

Goal: Compute 32x, 16x,

300x, 146x, 77x, 2x, 1x.

Reduce largest row:

000010000 = 16
000010000 = 16

000001000 = 8

000000101 = 5

000001000 = 8

000000010 = 2

000000001 = 1

plus 7 additions.

Inspiration: 1989 Bos–Coster.

000100000 = 32

000010000 = 16

100101100 = 300

010010010 = 146

001001101 = 77

000000010 = 2

000000001 = 1

Goal: Compute 32x, 16x,

300x, 146x, 77x, 2x, 1x.

Reduce largest row:

000000000 = 0

000010000 = 16

000001000 = 8

000000101 = 5

000001000 = 8

000000010 = 2

000000001 = 1

plus 7 additions.

Inspiration: 1989 Bos–Coster.

000100000 = 32

000010000 = 16

100101100 = 300

010010010 = 146

001001101 = 77

000000010 = 2

000000001 = 1

Goal: Compute 32x, 16x,

300x, 146x, 77x, 2x, 1x.

Reduce largest row:

000000000 = 0

000001000 = 8
000001000 = 8

000000101 = 5

000001000 = 8

000000010 = 2

000000001 = 1

plus 8 additions.

Inspiration: 1989 Bos–Coster.

000100000 = 32

000010000 = 16

100101100 = 300

010010010 = 146

001001101 = 77

000000010 = 2

000000001 = 1

Goal: Compute 32x, 16x,

300x, 146x, 77x, 2x, 1x.

Reduce largest row:

000000000 = 0

000000000 = 0
000001000 = 8

000000101 = 5

000001000 = 8

000000010 = 2

000000001 = 1

plus 8 additions.

Inspiration: 1989 Bos–Coster.

000100000 = 32

000010000 = 16

100101100 = 300

010010010 = 146

001001101 = 77

000000010 = 2

000000001 = 1

Goal: Compute 32x, 16x,

300x, 146x, 77x, 2x, 1x.

Reduce largest row:

000000000 = 0

000000000 = 0

000000000 = 0
000000101 = 5

000001000 = 8

000000010 = 2

000000001 = 1

plus 8 additions.

Inspiration: 1989 Bos–Coster.

000100000 = 32

000010000 = 16

100101100 = 300

010010010 = 146

001001101 = 77

000000010 = 2

000000001 = 1

Goal: Compute 32x, 16x,

300x, 146x, 77x, 2x, 1x.

Reduce largest row:

000000000 = 0

000000000 = 0

000000000 = 0

000000101 = 5

000000011 = 3
000000010 = 2

000000001 = 1

plus 9 additions.

Inspiration: 1989 Bos–Coster.

000100000 = 32

000010000 = 16

100101100 = 300

010010010 = 146

001001101 = 77

000000010 = 2

000000001 = 1

Goal: Compute 32x, 16x,

300x, 146x, 77x, 2x, 1x.

Reduce largest row:

000000000 = 0

000000000 = 0

000000000 = 0

000000010 = 2
000000011 = 3

000000010 = 2

000000001 = 1

plus 10 additions.

Inspiration: 1989 Bos–Coster.

000100000 = 32

000010000 = 16

100101100 = 300

010010010 = 146

001001101 = 77

000000010 = 2

000000001 = 1

Goal: Compute 32x, 16x,

300x, 146x, 77x, 2x, 1x.

Reduce largest row:

000000000 = 0

000000000 = 0

000000000 = 0

000000010 = 2

000000001 = 1
000000010 = 2

000000001 = 1

plus 11 additions.

Inspiration: 1989 Bos–Coster.

000100000 = 32

000010000 = 16

100101100 = 300

010010010 = 146

001001101 = 77

000000010 = 2

000000001 = 1

Goal: Compute 32x, 16x,

300x, 146x, 77x, 2x, 1x.

Reduce largest row:

000000000 = 0

000000000 = 0

000000000 = 0

000000000 = 0
000000001 = 1

000000010 = 2

000000001 = 1

plus 11 additions.

Inspiration: 1989 Bos–Coster.

000100000 = 32

000010000 = 16

100101100 = 300

010010010 = 146

001001101 = 77

000000010 = 2

000000001 = 1

Goal: Compute 32x, 16x,

300x, 146x, 77x, 2x, 1x.

Reduce largest row:

000000000 = 0

000000000 = 0

000000000 = 0

000000000 = 0

000000001 = 1

000000001 = 1
000000001 = 1

plus 12 additions.

Inspiration: 1989 Bos–Coster.

000100000 = 32

000010000 = 16

100101100 = 300

010010010 = 146

001001101 = 77

000000010 = 2

000000001 = 1

Goal: Compute 32x, 16x,

300x, 146x, 77x, 2x, 1x.

Reduce largest row:

000000000 = 0

000000000 = 0

000000000 = 0

000000000 = 0

000000000 = 0
000000001 = 1

000000001 = 1

plus 12 additions.

Inspiration: 1989 Bos–Coster.

000100000 = 32

000010000 = 16

100101100 = 300

010010010 = 146

001001101 = 77

000000010 = 2

000000001 = 1

Goal: Compute 32x, 16x,

300x, 146x, 77x, 2x, 1x.

Reduce largest row:

000000000 = 0

000000000 = 0

000000000 = 0

000000000 = 0

000000000 = 0

000000000 = 0
000000001 = 1

plus 12 additions.

Inspiration: 1989 Bos–Coster.

000100000 = 32

000010000 = 16

100101100 = 300

010010010 = 146

001001101 = 77

000000010 = 2

000000001 = 1

Goal: Compute 32x, 16x,

300x, 146x, 77x, 2x, 1x.

Reduce largest row:

000000000 = 0

000000000 = 0

000000000 = 0

000000000 = 0

000000000 = 0

000000000 = 0

000000000 = 0
plus 12 additions.

Final addition chain: 1, 2, 3, 5, 8,

16, 32, 37, 69, 77, 146, 154, 300.

Short, no temporary storage,

low two-operand complexity, etc.

Inspiration: 1989 Bos–Coster.

000100000 = 32

000010000 = 16

100101100 = 300

010010010 = 146

001001101 = 77

000000010 = 2

000000001 = 1

Goal: Compute 32x, 16x,

300x, 146x, 77x, 2x, 1x.

Reduce largest row:

000000000 = 0

000000000 = 0

000000000 = 0

000000000 = 0

000000000 = 0

000000000 = 0

000000000 = 0
plus 12 additions.

Final addition chain: 1, 2, 3, 5, 8,

16, 32, 37, 69, 77, 146, 154, 300.

Short, no temporary storage,

low two-operand complexity, etc.

Can imagine many other

mod-2 adaptations

of the Bos–Coster idea.

In reducing largest row:

Why use largest of

the remaining rows?

Why not minimize xor?

Out of first-bit-set rows:

Why do largest row first?

Why not start in middle,

or build Hamming tree?

Can reduce xors without

compromising regs etc.

I’m continuing to experiment.

Inspiration: 1989 Bos–Coster.

000100000 = 32

000010000 = 16

100101100 = 300

010010010 = 146

001001101 = 77

000000010 = 2

000000001 = 1

Goal: Compute 32x, 16x,

300x, 146x, 77x, 2x, 1x.

Reduce largest row:

000000000 = 0

000000000 = 0

000000000 = 0

000000000 = 0

000000000 = 0

000000000 = 0

000000000 = 0
plus 12 additions.

Final addition chain: 1, 2, 3, 5, 8,

16, 32, 37, 69, 77, 146, 154, 300.

Short, no temporary storage,

low two-operand complexity, etc.

Can imagine many other

mod-2 adaptations

of the Bos–Coster idea.

In reducing largest row:

Why use largest of

the remaining rows?

Why not minimize xor?

Out of first-bit-set rows:

Why do largest row first?

Why not start in middle,

or build Hamming tree?

Can reduce xors without

compromising regs etc.

I’m continuing to experiment.

Inspiration: 1989 Bos–Coster.

000100000 = 32

000010000 = 16

100101100 = 300

010010010 = 146

001001101 = 77

000000010 = 2

000000001 = 1

Goal: Compute 32x, 16x,

300x, 146x, 77x, 2x, 1x.

Reduce largest row:

000000000 = 0

000000000 = 0

000000000 = 0

000000000 = 0

000000000 = 0

000000000 = 0

000000000 = 0
plus 12 additions.

Final addition chain: 1, 2, 3, 5, 8,

16, 32, 37, 69, 77, 146, 154, 300.

Short, no temporary storage,

low two-operand complexity, etc.

Can imagine many other

mod-2 adaptations

of the Bos–Coster idea.

In reducing largest row:

Why use largest of

the remaining rows?

Why not minimize xor?

Out of first-bit-set rows:

Why do largest row first?

Why not start in middle,

or build Hamming tree?

Can reduce xors without

compromising regs etc.

I’m continuing to experiment.

Reduce largest row:

000000000 = 0

000000000 = 0

000000000 = 0

000000000 = 0

000000000 = 0

000000000 = 0

000000000 = 0
plus 12 additions.

Final addition chain: 1, 2, 3, 5, 8,

16, 32, 37, 69, 77, 146, 154, 300.

Short, no temporary storage,

low two-operand complexity, etc.

Can imagine many other

mod-2 adaptations

of the Bos–Coster idea.

In reducing largest row:

Why use largest of

the remaining rows?

Why not minimize xor?

Out of first-bit-set rows:

Why do largest row first?

Why not start in middle,

or build Hamming tree?

Can reduce xors without

compromising regs etc.

I’m continuing to experiment.

