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Example: size-4 poly Karatsuba.
Start with size 2:

F=Fy+ Lz, G = Gg + Gz,
Ho = FoGo, H2 = F16G1,

Hi = (Fo—I—Fl)(GQ—I—Gl)—Ho—HQ,
= FG = Hy + Hiz + Hoz?.

Substitute £ = #2 etc.:
F = fo+ fit + fot® + f3t°,
G = fo+ fit + fot* + f3t>,
Ho = (fo + f1t)(g0 + g1t).
Hz = (f2 + f3t)(92 + g3t),
= (fo+ fo+(fr+ f))-
(90 + 92 + (g1 + g93)t)
— Ho — H>
= FG = Hy + H1t2 + H2t4.
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Example: size-4 poly Karatsuba.
Start with size 2:

F=Fy+ Fiz, G = Gg + Gz,
Ho = FoGo, Hy = F1Gy,

Hi = (Fo—I—Fl)(Go—I—Gl)—Ho—HQ,
= FG = Hy + Hiz + Hoz?.

Substitute £ = #2 etc.:

F = fo+ fit+ fot® + f3t°,

G = fo+ fit + fot* + f3t>,

Ho = (fo + fi1t)(g0 + g1t).

Hy = (f2 + f3t)(g2 + g3t).

Hi = (fo+ o+ (fr+ f3)t)-
(90 + 92 + (91 + 93)1)
— Ho — H>

= FG = Hg + Hit? + Hot*,
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Example: size-4 poly Karatsuba.
Start with size 2:

F=Fy+ Fiz, G = Gg + Gz,
Ho = FoGo, H2 = F16G1,

Hi = (Fo—I—Fl)(GQ—I—Gl)—Ho—HQ,

= FG = Hy + Hiz + Hyz?.

Substitute £ = #2 etc.:
F = fo+ fit + fot® + f3t°,
G = fo+ fit + fot* + f3t>,
Ho = (fo + fi1t)(g0 + g1t).
Hz = (f2 + f3t)(92 + g3t),
= (fo+ fo+(fr+ f))-
(90 + 92 + (91 + g93)t)
— Ho — H>
= FG = Hy + H1t2 + H2t4.

Initial linear com

fo+ f2, f1+ f3,
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Example: size-4 poly Karatsuba.
Start with size 2:

F=Fy+ Fiz, G = Gg + Gz,

Ho = FoGo, Hy = F1Gy,

Hi = (Fo—I—Fl)(Go—I—Gl)—Ho—HQ,
= FG = Hy + Hiz + Hoz?.

Substitute £ = #2 etc.:

F = fo+ fit+ fot® + f3t°,

G = fo+ fit + fot* + f3t°,

Ho = (fo + fi1t)(g0 + g1t).

Hy = (f2 + f3t)(g2 + g3t).

Hi = (fo+ o+ (fr+ f3)t)-
(90 + 92 + (91 + g93)t)
— Ho — H>

= FG = Hy + H1t2 + H2t4.

Initial linear computation:

fot fo.fi+f.90+92.9
algebraic complexity 4.

Three size-2 mults produci
Ho = po + p1t + pot?;
Ho = qo + qit + qot?;
Ho+ Hi + H) =19 + 1t

Final linear reconstruction:
H1 = (r0 — o — qo) +
(r1 —p1—q1)t +
(r2 — P2 — q2)t°,
algebraic complexity 6;
FG = Hgy + Hit? + Hot*,
algebraic complexity 2.



Example: size-4 poly Karatsuba. Initial linear computation:

Start with size 2: fo+ f2. fi+ f3.90 + 92, 91 + g3;
F=F)y+ Fz, G = Gy + Gz, algebraic complexity 4.

Ho = FoGo, Ho = F1G1,

Hi = (Fo—I—Fl)(GQ—I—Gl)—Ho—HQ,
= FG = Hy + Hiz + Haz?.

Three size-2 mults producing

Ho = po + p1t + pot;

Ho = qo + qit + qot?;

Substitute ¢ = #2 etc.: Ho + Hi + Ho = 1o + 71t + rot?.
F = fo+ fit + fot® + f3t°,
G = fo+ fit + fot* + f3t>,
Ho = (fo + fit)(go + 91t),
Hy = + fat + g3t),

Hi = gfi + ;z —)—(?; 1 ——g ;3))t) - (?‘2 ~ P2 72)152,
( \ algebraic complexity 6;

go — g2 + (g]. T g3 t) FG — HO 1 Hltz 1 H2t4,
— Ho — H>

= FG = Hy + H1t2 + H2t4.

Final linear reconstruction:
H1 = (ro — po — q0) +
(r1 —p1—q1)t+

algebraic complexity 2.




le: size-4 poly Karatsuba.
/ith size 2:

y+ Fiz, G = Go + Gz,
0Go, Ha = F161,
Fo+F1)(Go+G1)—Ho—Ho,
= Ho + Hiz + Hoz?.

ute T = £2 etc.:

+ fit + fot® + f3t,
+ fit + fot? + f3to,
fo+ fit)(go + 91t),
f2 + f3t)(92 + g3t),
fo+ fo+(f1+ f3)f)-
g0 + g2 + (91 + 93)t)
— Ho — Ho

= Hp + H1t2 + H2t4.

Initial linear computation:

fo+ f2, f1+ f3.90 + 92, 91 + g3;
algebraic complexity 4.

Three size-2 mults producing

Ho = pg + p1t + pot?;
Hy = qo + g1t + got?;

Ho + Hi + Ho = g + 71t + rot?.

Final linear reconstruction:
H1 = (r0 — o — qo) +
(r1 —p1—q1)t +
(r2 — P2 — q2)t°,
algebraic complexity 6;
FG = Hgy + Hit? + Hot*,
algebraic complexity 2.
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poly Karatsuba.

, = Gg + Gz,

= F1G1,
0+G1)—Ho—Hb,
11z + Hox?.

Z etc.:

fot? + f3t°,
fot? + f3t2,
g0 + 91t),
g2 + g3t)
(f1 + f3)t) -
(91 + 93)t)

2
'/1t2 + H2t4.

Initial linear computation:

fo+ f2, f1+ f3.90 + 92, 91 + 93;
algebraic complexity 4.

Three size-2 mults producing

Ho = pg + p1t + pot?;
Hy = qo + g1t + got?;

Ho + Hi + Ho = 1o + 71t + rot?.

Final linear reconstruction:
H1 = (r0 — po — qo0) +
(r1 —p1— q1)t +
(r2 — P2 — @2)t°,
algebraic complexity 6;
FG = Hy + Hit? + Hot*,
algebraic complexity 2.
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Initial linear computation:

fo+ f2, f1+ f3.90 + 92, 91 + g3;
algebraic complexity 4.

Three size-2 mults producing

Ho = pg + p1t + pot?;
Hy = qo + g1t + got?;

Ho + Hi + Ho = g + 71t + rot?.

Final linear reconstruction:
H1 = (r0 — Po — qo) +
(r1 —p1—q1)t +
(r2 — P2 — q2)t°,
algebraic complexity 6;
FG = Hgy + Hit? + Hot*,
algebraic complexity 2.

Let's look more closely
at the reconstruction:

ho = Po;
h1 = p1;
ho = p2+ (10 — Po — 90);

h3 = (r1 —p1 — q1);

hs = (12 — P2 — 92) + qo;
hs = q1;

he = q2.



Initial linear computation:

fo+ f2, f1+ f3.90 + 92, 91 + 93;
algebraic complexity 4.

Three size-2 mults producing

Ho = pg + p1t + pot?;
Hy = qo + g1t + got?;

Ho + Hi + Ho = 1o + 71t + rot?.

Final linear reconstruction:
H1 = (r0 — po — qo0) +
(r1 —p1—q1)t +
(r2 — P2 — @2)t°,
algebraic complexity 6;
FG = Hy + Hit? + Hot*,
algebraic complexity 2.

Let's look more closely
at the reconstruction:

ho = po;

h1 = p1;

ho = p2 + (o — Po — 90);
h3 = (r1 —p1 — q1);

hs = (12 — P2 — q2) + 9o
hs = q1;

he = q2.




Initial linear computation:

fo+ f2, f1+ f3.90 + 92, 91 + 93;
algebraic complexity 4.

Three size-2 mults producing

Ho = pg + p1t + pot?;
Hy = qo + g1t + got?;

Ho + Hi + Ho = 1o + 71t + rot?.

Final linear reconstruction:
H1 = (r0 — po — qo0) +
(r1 —p1—q1)t +
(r2 — P2 — @2)t°,
algebraic complexity 6;
FG = Hy + Hit? + Hot*,
algebraic complexity 2.

Let's look more closely
at the reconstruction:

ho = Po;
h1 = p1;
ho =p2+ (0 — Po — 90);

hs =(r1 —p1 — q1);

ha = (12 — P2 — g2) + qo;
hs = q1;

he = q2.

Can observe manually

that p» — qg Is repeated.
See, e.g., 2000 Bernstein.



Inear computation:

, f1+ f3.90 + 92,91 + g3
1c complexity 4.

size-2 mults producing

0 + pit + pot?;
0 + g1t + got?;

11 4+ Ho = 19 + Tt + ot

near reconstruction:
T0 — P0 — qo) +
71— P1 — q1)t +
T2 — P2 — @2)t°,

1c complexity 6;

Ho + H1t2 + H2t4,
1c complexity 2.

Let's look more closely
at the reconstruction:

ho = po;

h1 = p1;

ho = p2 + (T0 — Po — 90);
h3 = (r1 — p1 — q1);

hs = (12 — P2 — q2) + 9o
hs = q1;

he = q2.

Can observe manually
that p» — qg Is repeated.
See, e.g., 2000 Bernstein.
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Let's look more closely
at the reconstruction:

ho = po;

h1 = p1;

ho = p2 + (o — Po — 90);
h3 = (r1 —p1 — q1);

hs = (12 — P2 — q2) + 9o
hs = q1;

he = q2.

Can observe manually
that p» — qg Is repeated.
See, e.g., 2000 Bernstein.
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1 + g3;

Let's look more closely
at the reconstruction:

ho = po;

h1 = p1;

ho = p2 + (T0 — Po — 90);
h3 = (r1 — p1 — q1);

hs = (T2 — P2 — q2) + qo0;
hs = q1;

he = q2.

Can observe manually
that p» — qg Is repeated.
See, e.g., 2000 Bernstein.
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Let's look more closely
at the reconstruction:

ho = po;

h1 = p1;

ho = p2 + (o — Po — 90);
h3 = (r1 —p1 — q1);

hs = (12 — P2 — q2) + qo0;
hs = q1;

he = q2.

Can observe manually
that p» — qg Is repeated.
See, e.g., 2000 Bernstein.

Some addition-chain algorithms

will automatically

find this speedup.

Consider, e.g., greedy additive
CSE algorithm from 1997 Paar:
e find Iinput pair g, 71

wit

n most popular 20 ® 1;

e compute 19 @ 21;

e simplify using 10 @ 1;

e repeat.

This algorithm would have

automatically found »y & qg

inside Karatsuba reconstruction.
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2+ (0o — Po — 90);
r—P1— q1);

ro — P2 — q2) + qo;
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2.

serve manually

 — go IS repeated.
o, 2000 Bernstein.

Some addition-chain algorithms
will automatically
find this speedup.

Consider, e.g., greedy additive
CSE algorithm from 1997 Paar:
e find Iinput pair 19, 71

with most popular 19 @ 11;
e compute 10 D 1;
e simplify using 10 @ 11;
® repeat.

This algorithm would have

automatically found py & qg

inside Karatsuba reconstruction.
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Some addition-chain algorithms

will automatically

find this speedup.

Consider, e.g., greedy additive
CSE algorithm from 1997 Paar:
e find Iinput pair g, 11

wit

n most popular 20 @ 1;

e compute 19 @ 21;

e simplify using 10 @ 1;

e repeat.

This algorithm would have

automatically found py & qg

inside Karatsuba reconstruction.

Today's algorithm: “xor la
Start with the matrix mod
for the desired linear map.

ho: 100000000
h1: 010000000
ho: 101100100
h3: 010010010
hs: 001101001
hy: 000010000
he: 000001000

Each row has coefficients ¢
Po,P1,P2:.490,91.492,70,7T1,°



Some addition-chain algorithms
will automatically
find this speedup.

Consider, e.g., greedy additive
CSE algorithm from 1997 Paar:
e find Iinput pair 19, 71

with most popular 19 @ 21;
e compute 19 @D 71;
e simplify using 10 @ 1;
® repeat.

This algorithm would have

automatically found »y & qg

inside Karatsuba reconstruction.

Today's algorithm: “xor largest.”
Start with the matrix mod 2
for the desired linear map.

ho: 100000000
h1: 010000000
ho: 101100100
h3: 010010010
h4: 001101001
hys: 000010000
he: 000001000

Each row has coefficients of
Po, P1,P2,90,.491,492, 70,71, 72.
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Today's algorithm: “xor largest.”

Start with the matrix mod 2
for the desired linear map.

ho: 100000000
h1: 010000000
ho: 101100100
h3: 010010010
h4: 001101001
hs: 000010000
he: 000001000

Each row has coefficients of
Po.P1,P2,90,.491,492, 70,71, 72.
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Today's algorithm: “xor largest.”

Start with the matrix mod 2
for the desired linear map.

ho: 100000000
h1: 010000000
h»: 101100100
h3: 010010010
h4: 001101001
hs: 000010000
he: 000001000

Each row has coefficients of
Po, P1,P2,90,.491,492, 70,71, 72.

Replace largest r
by its xor with
second-largest ro

100000000
010000000
001100100 <
010010010
001101001
000010000
000001000

Recursively comg
and finish with o



thms Today's algorithm: “xor largest.” Replace largest row
Start with the matrix mod 2 by its xor with
for the desired linear map. second-largest row.
tive ho: 100000000 100000000
Paar: h1: 010000000 010000000
ho: 101100100 001100100 <«
1; h3: 010010010 010010010
hs: 001101001 001101001
hs: 000010000 000010000
he: 000001000 000001000
Each row has coefficients of Recursively compute this,
0 0o, P1, P2,490,91,92,T0, T1, T2. and finish with one xor.
ction.




Today's algorithm: “xor largest.”

Start with the matrix mod 2
for the desired linear map.

ho: 100000000
h1: 010000000
h»: 101100100
h3: 010010010
h4: 001101001
hs: 000010000
he: 000001000

Each row has coefficients of
Po, P1,P2,90,.491,492, 70,71, 72.

Replace largest row
by its xor with
second-largest row.

100000000
010000000
001100100 <
010010010
001101001
000010000
000001000

Recursively compute this,
and finish with one xor.



s algorithm: “xor largest.”

nth the matrix mod 2

desired linear map.

0000000
0000000
1100100
0010010
1101001
0010000
0001000

ow has coefficients of
P2,490,91,92, 70,71, 72.

Replace largest row
by its xor with
second-largest row.

100000000
010000000
001100100 <
010010010
001101001
000010000
000001000

Recursively compute this,
and finish with one xor.

If two |
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change
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00000C
01000C
00110C
01001C
001101
00001C
000001

Recurs
and fin
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officients of
d2, 70, 7T1,72.

Replace largest row
by its xor with
second-largest row.

100000000
010000000
001100100 <
010010010
001101001
000010000
000001000

Recursively compute this,
and finish with one xor.

If two largest rov
don't have same
change largest rc
by clearing first t

000000000 <
010000000
001100100
010010010
001101001
000010000
000001000

Recursively comg
and finish with o
(often just a cop
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Replace largest row
by its xor with
second-largest row.

100000000
010000000
001100100 <
010010010
001101001
000010000
000001000

Recursively compute this,
and finish with one xor.

If two largest rows
don't have same first bit,
change largest row
by clearing first bit.

000000000 <
010000000
001100100
010010010
001101001
000010000
000001000

Recursively compute this,
and finish with one xor
(often just a copy).



Replace largest row
by its xor with
second-largest row.

100000000
010000000
001100100 <
010010010
001101001
000010000
000001000

Recursively compute this,
and finish with one xor.

If two largest rows
don't have same first bit,
change largest row
by clearing first bit.

000000000 <
010000000
001100100
010010010
001101001
000010000
000001000

Recursively compute this,
and finish with one xor
(often just a copy).



e largest row
cor with
-largest row.

1000
1000
100 <«
010
001
1000
000

vely compute this,
iIsh with one xor.

If two largest rows
don't have same first bit,
change largest row
by clearing first bit.

000000000 <
010000000
001100100
010010010
001101001
000010000
000001000

Recursively compute this,
and finish with one xor
(often just a copy).

Contin

10000C
01000C
10110C
01001C
001101
00001C
000001

(startir



OW

yute this,

ne Xor.

If two largest rows

don’'t have same first bit,

change largest row
by clearing first bit.

000000000 <
010000000
001100100
010010010
001101001
000010000
000001000

Recursively compute this,

and finish with one xor
(often just a copy).

Continue in the ¢

100000000
010000000
101100100
010010010
001101001
000010000
000001000

(starting matrix .



If two largest rows

don’'t have same first bit,

change largest row
by clearing first bit.

000000000 <
010000000
001100100
010010010
001101001
000010000
000001000

Recursively compute this,

and finish with one xor
(often just a copy).

Continue in the same way:

100000000
010000000
101100100
010010010
001101001
000010000
000001000

(starting matrix again)



If two largest rows

don’'t have same first bit,

change largest row
by clearing first bit.

000000000 <
010000000
001100100
010010010
001101001
000010000
000001000

Recursively compute this,

and finish with one xor
(often just a copy).

Continue in the same way:

100000000
010000000
101100100
010010010
001101001
000010000
000001000

(starting matrix again)



If two largest rows

don’'t have same first bit,

change largest row
by clearing first bit.

000000000 <
010000000
001100100
010010010
001101001
000010000
000001000

Recursively compute this,

and finish with one xor
(often just a copy).

Continue in the same way:

100000000
010000000
001100100 <
010010010
001101001
000010000
000001000

plus 1 xor.



If two largest rows

don’'t have same first bit,

change largest row

Continue in the same way:

000000000 <

| | | 010000000
by clearing first bit. 001100100
000000000 <« 010010010
010000000 001101001
001100100 000010000
010010010 000001000
001101001 plus 1 xor, 1 input load.
000010000
000001000

Recursively compute this,
and finish with one xor
(often just a copy).




If two largest rows

don’'t have same first bit,

change largest row
by clearing first bit.

000000000 <
010000000
001100100
010010010
001101001
000010000
000001000

Recursively compute this,

and finish with one xor
(often just a copy).

Continue in the same way:

000000000
010000000
001100100
000010010 <«
001101001
000010000
000001000

plus 2 xors, 1 input load.



If two largest rows

don’'t have same first bit,

change largest row
by clearing first bit.

Continue in the same way:

000000000

000000000 <

001100100
000000000 <« 000010010
010000000 001101001
001100100 000010000
010010010 000001000
001101001 plus 2 xors, 2 input loads.
000010000
000001000

Recursively compute this,
and finish with one xor
(often just a copy).




If two largest rows

don’'t have same first bit,

change largest row
by clearing first bit.

000000000 <
010000000
001100100
010010010
001101001
000010000
000001000

Recursively compute this,

and finish with one xor
(often just a copy).

Continue in the same way:

000000000
000000000
001100100
000010010
000001101 <
000010000
000001000

plus 3 xors, 2 input loads.



If two largest rows

don’'t have same first bit,

change largest row
by clearing first bit.

000000000 <
010000000
001100100
010010010
001101001
000010000
000001000

Recursively compute this,

and finish with one xor
(often just a copy).

Continue in the same way:

000000000
000000000
000100100 <
000010010
000001101
000010000
000001000

plus 4 xors, 3 input loads.



If two largest rows

don’'t have same first bit,

change largest row
by clearing first bit.

000000000 <
010000000
001100100
010010010
001101001
000010000
000001000

Recursively compute this,

and finish with one xor
(often just a copy).

Continue in the same way:

000000000
000000000
000000100 <
000010010
000001101
000010000
000001000

plus 5 xors, 4 input loads.



If two largest rows

don’'t have same first bit,

change largest row
by clearing first bit.

000000000 <
010000000
001100100
010010010
001101001
000010000
000001000

Recursively compute this,

and finish with one xor
(often just a copy).

Continue in the same way:

000000000
000000000
000000100
000000010 <
000001101
000010000
000001000

plus 6 xors, 4 input loads.



If two largest rows Continue in the same way:
don’'t have same first bit,

000000000
change .Iarge.st rO\{v 000000000
by clearing first bit. 000000100
000000000 <« 000000010
010000000 000001101
001100100 000000000 <
010010010 000001000
001101001 plus 6 xors, b input loads.
000010000
000001000

Recursively compute this,
and finish with one xor
(often just a copy).




If two largest rows

don’'t have same first bit,

change largest row
by clearing first bit.

000000000 <
010000000
001100100
010010010
001101001
000010000
000001000

Recursively compute this,

and finish with one xor
(often just a copy).

Continue in the same way:

000000000
000000000
000000100
000000010
000000101 <«
000000000
000001000

plus 7 xors, b input loads.



If two largest rows Continue in the same way:
don’'t have same first bit,

000000000
change .Iarge.st rO\{v 000000000
by clearing first bit. 000000100
000000000 < 000000010
010000000 000000101
001100100 000000000
010010010 000000000 <
001101001 plus 7 xors, 6 input loads.
000010000
000001000

Recursively compute this,
and finish with one xor
(often just a copy).




If two largest rows

don’'t have same first bit,

change largest row
by clearing first bit.

000000000 <
010000000
001100100
010010010
001101001
000010000
000001000

Recursively compute this,

and finish with one xor
(often just a copy).

Continue in the same way:

000000000
000000000
000000100
000000010
000000001 <
000000000
000000000

plus 8 xors, 6 input loads.



If two largest rows

don’'t have same first bit,

change largest row
by clearing first bit.

000000000 <
010000000
001100100
010010010
001101001
000010000
000001000

Recursively compute this,

and finish with one xor
(often just a copy).

Continue in the same way:

000000000
000000000
000000000 <
000000010
000000001
000000000
000000000

plus 8 xors, 7 Input loads.



If two largest rows

don’'t have same first bit,

change largest row
by clearing first bit.

000000000 <
010000000
001100100
010010010
001101001
000010000
000001000

Recursively compute this,

and finish with one xor
(often just a copy).

Continue in the same way:

000000000
000000000
000000000
000000000 <
000000001
000000000
000000000

plus 8 xors, 8 input loads.



If two largest rows

don’'t have same first bit,

change largest row
by clearing first bit.

000000000 <
010000000
001100100
010010010
001101001
000010000
000001000

Recursively compute this,

and finish with one xor
(often just a copy).

Continue in the same way:

000000000
000000000
000000000
000000000
000000000 <
000000000
000000000

plus 8 xors, 9 input loads.



If two largest rows

don’'t have same first bit,

change largest row
by clearing first bit.

000000000 <
010000000
001100100
010010010
001101001
000010000
000001000

Recursively compute this,

and finish with one xor
(often just a copy).

Continue in the same way:

000000000
000000000
000000000
000000000
000000000 <
000000000
000000000

plus 8 xors, 9 input loads.

“Is this supposed to be
an interesting algorithm?”
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vely compute this,

Ish with one xor
just a copy).

Continue in the same way:

000000000
000000000
000000000
000000000
000000000 <
000000000
000000000

plus 8 xors, 9 input loads.

“Is this supposed to be
an interesting algorithm?”

Anothe

00010C
00001C
100101
01001C
001001
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Continue in the same way:

000000000
000000000
000000000
000000000
000000000 <
000000000
000000000

plus 8 xors, 9 input loads.

“Is this supposed to be
an interesting algorithm?”

Another example

000100000
000010000
100101100
010010010
001001101
000000010
000000001

Same matrix, bu

in a different ord

first r's (used on

then ¢'s (usec

then p's (used tv

tw



Continue in the same way:

000000000
000000000
000000000
000000000
000000000 <
000000000
000000000

plus 8 xors, 9 input loads.

“Is this supposed to be
an interesting algorithm?”

Another example:

000100000
000010000
100101100
010010010
001001101
000000010
000000001

Same matrix, but inputs
in a different order:

first r's (used once each),
then p’'s (used twice each)

then ¢'s (used twice each).



Continue in the same way:

000000000
000000000
000000000
000000000
000000000 <
000000000
000000000

plus 8 xors, 9 input loads.

“Is this supposed to be
an interesting algorithm?”

Another example:

000100000
000010000
100101100
010010010
001001101
000000010
000000001

Same matrix, but inputs
in a different order:

first r's (used once each),
then p’s (used twice each),

then ¢'s (used twice each).



Continue in the same way:

000000000
000000000
000000000
000000000
000000000 <
000000000
000000000

plus 8 xors, 9 input loads.

“Is this supposed to be
an interesting algorithm?”

Another example:

000100000
000010000
000101100 <«
010010010
001001101
000000010
000000001

plus 1 xor, 1 input load.



Continue in the same way:

000000000
000000000
000000000
000000000
000000000 <
000000000
000000000

plus 8 xors, 9 input loads.

“Is this supposed to be
an interesting algorithm?”

Another example:

000100000
000010000
000101100
000010010 <«
001001101
000000010
000000001

plus 2 xors, 2 input loads.



Continue in the same way:

000000000
000000000
000000000
000000000
000000000 <
000000000
000000000

plus 8 xors, 9 input loads.

“Is this supposed to be
an interesting algorithm?”

Another example:

000100000
000010000
000101100
000010010
000001101 <
000000010
000000001

plus 3 xors, 3 input loads.



Continue in the same way:

000000000
000000000
000000000
000000000
000000000 <
000000000
000000000

plus 8 xors, 9 input loads.

“Is this supposed to be
an interesting algorithm?”

Another example:

000100000
000010000
000001100 <
000010010
000001101
000000010
000000001

plus 4 xors, 3 input loads.



Continue in the same way:

000000000
000000000
000000000
000000000
000000000 <
000000000
000000000

plus 8 xors, 9 input loads.

“Is this supposed to be
an interesting algorithm?”

Another example:

000000000 <
000010000
000001100
000010010
000001101
000000010
000000001

plus 4 xors, 4 input loads.



Continue in the same way:

000000000
000000000
000000000
000000000
000000000 <
000000000
000000000

plus 8 xors, 9 input loads.

“Is this supposed to be
an interesting algorithm?”

Another example:

000000000
000010000
000001100
000000010 <
000001101
000000010
000000001

plus 5 xors, 4 input loads.



Continue in the same way:

000000000
000000000
000000000
000000000
000000000 <
000000000
000000000

plus 8 xors, 9 input loads.

“Is this supposed to be
an interesting algorithm?”

Another example:

000000000
000000000 <
000001100
000000010
000001101
000000010
000000001

plus b xors, 5 input loads.



Continue in the same way:

000000000
000000000
000000000
000000000
000000000 <
000000000
000000000

plus 8 xors, 9 input loads.

“Is this supposed to be
an interesting algorithm?”

Another example:

000000000
000000000
000001100
000000010
000000001 <
000000010
000000001

plus 6 xors, 5 input loads.



Continue in the same way:

000000000
000000000
000000000
000000000
000000000 <
000000000
000000000

plus 8 xors, 9 input loads.

“Is this supposed to be
an interesting algorithm?”

Another example:

000000000
000000000
000000100 <
000000010
000000001
000000010
000000001

plus 7 xors, 6 input loads.



Continue in the same way:

000000000
000000000
000000000
000000000
000000000 <
000000000
000000000

plus 8 xors, 9 input loads.

“Is this supposed to be
an interesting algorithm?”

Another example:

000000000
000000000
000000000 <
000000010
000000001
000000010
000000001

plus 7 xors, 7 Input loads.



Continue in the same way:

000000000
000000000
000000000
000000000
000000000 <
000000000
000000000

plus 8 xors, 9 input loads.

“Is this supposed to be
an interesting algorithm?”

Another example:

000000000
000000000
000000000
000000000 <
000000001
000000010
000000001

plus 7 xors, 7 Input loads.



Continue in the same way:

000000000
000000000
000000000
000000000
000000000 <
000000000
000000000

plus 8 xors, 9 input loads.

“Is this supposed to be
an interesting algorithm?”

Another example:

000000000
000000000
000000000
000000000
000000001
000000000 <
000000001

plus 7 xors, 8 input loads.



Continue in the same way:

000000000
000000000
000000000
000000000
000000000 <
000000000
000000000

plus 8 xors, 9 input loads.

“Is this supposed to be
an interesting algorithm?”

Another example:

000000000
000000000
000000000
000000000
000000000 <
000000000
000000001

plus 7 xors, 8 input loads.



Continue in the same way:

000000000
000000000
000000000
000000000
000000000 <
000000000
000000000

plus 8 xors, 9 input loads.

“Is this supposed to be
an interesting algorithm?”

Another example:

000000000
000000000
000000000
000000000
000000000
000000000
000000000 <

plus 7 xors, 9 input loads.

Algorithm found the speedup.



Continue in the same way:

000000000
000000000
000000000
000000000
000000000 <
000000000
000000000

plus 8 xors, 9 input loads.

“Is this supposed to be
an interesting algorithm?”

Another example:

000000000
000000000
000000000
000000000
000000000
000000000
000000000 <

plus 7 xors, 9 input loads.
Algorithm found the speedup.

Also has other useful features.



ue in the same way:

1000
1000
1000
1000
000 <«
1000
1000

xors, 9 input loads.

, supposed to be
resting algorithm?”

Another example:

000000000
000000000
000000000
000000000
000000000
000000000
000000000 <

plus 7 xors, 9 input loads.
Algorithm found the speedup.

Also has other useful features.
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same way:
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Another example:

000000000
000000000
000000000
000000000
000000000
000000000
000000000 <

plus 7 xors, 9 input loads.
Algorithm found the speedup.

Also has other useful features.

Memory friendlin
Algorithm writes
to the output reg
No temporary st

n Inputs, n outp
total 2n registers
with O loads, O s

Or n + 1 registel
with n loads, 0 s
each Iinput Is rea

Or n registers
with n loads, 0 s
if platform has Ic



Another example:

000000000
000000000
000000000
000000000
000000000
000000000
000000000 <

plus 7 xors, 9 input loads.
Algorithm found the speedup.

Also has other useful features.

Memory friendliness:
Algorithm writes only
to the output registers.
No temporary storage.

n Inputs, n outputs:
total 2n registers
with 0 loads, 0 stores.

Or n + 1 registers
with n loads, 0 stores:
each input is read only onc

Or n registers
with n loads, O stores,
if platform has load-xor ins



Another example:

000000000
000000000
000000000
000000000
000000000
000000000
000000000 <

plus 7 xors, 9 input loads.
Algorithm found the speedup.

Also has other useful features.

Memory friendliness:
Algorithm writes only
to the output registers.
No temporary storage.

n Inputs, n outputs:
total 2n registers
with 0 loads, 0 stores.

Or n + 1 registers
with n loads, 0 stores:
each input is read only once.

Or n registers
with n loads, O stores,
if platform has load-xor insn.



r example:

1000
1000
1000
1000
1000
1000
000 <«

xors, 9 input loads.
hm found the speedup.

s other useful features.

Memory friendliness:
Algorithm writes only
to the output registers.
No temporary storage.

n Inputs, n outputs:
total 2n registers
with 0 loads, O stores.

Or n + 1 registers
with n loads, 0 stores:
each input iIs read only once.

Or n registers
with n loads, O stores,
if platform has load-xor insn.

Two-oj
Platfor
but wit
uses or

Naive ¢
n+ 1]
but ust

Input
(e.g., 1
somew

SOMeEwW

Greedy
somew

many r
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the speedup.

seful features.

Memory friendliness:
Algorithm writes only
to the output registers.
No temporary storage.

n Inputs, n outputs:
total 2n registers
with O loads, 0 stores.

Or n + 1 registers
with n loads, 0 stores:
each input is read only once.

Or n registers
with n loads, O stores,
if platform has load-xor insn.

Two-operand frie

Platform with a

but wit
uses on
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Y N extre
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n + 1 registers, 1

but usually many
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Memory friendliness:
Algorithm writes only
to the output registers.
No temporary storage.

n Inputs, n outputs:
total 2n registers
with 0 loads, O stores.

Or n + 1 registers
with n loads, 0 stores:
each input iIs read only once.

Or n registers
with n loads, O stores,
if platform has load-xor insn.

Two-operand friendliness:
Platform with a < a & b

but without a <~ b @ ¢

uses only n extra copies.

Naive column sweep a

n + 1 registers, n loac

SO u
S,

but usually many more xor

Input partitioning

(e.g., 1956 Lupanov) uses

somewhat more Xxors, copie

somewhat more registers.

Greedy additive CSE uses
somewhat fewer xors but

many more coples, register



Memory friendliness:
Algorithm writes only
to the output registers.
No temporary storage.

n Inputs, n outputs:
total 2n registers
with O loads, 0 stores.

Or n + 1 registers
with n loads, 0 stores:
each input is read only once.

Or n registers
with n loads, O stores,
if platform has load-xor insn.

Two-operand friendliness:
Platform with a < a & b
but without a <~ b &® ¢

uses only n extra copies.

Naive column sweep also uses

n + 1 registers, n loads,

but usually many more xors.

Input partitioning

(e.g., 1956 Lupanov) uses

SOMEwW

SOMEwW

nat more xors, copies;

nat more registers.

Greedy additive CSE uses
somewhat fewer xors but

many more coples, registers.



y friendliness:
hm writes only
output registers.
1porary storage.

(S, n outputs:
n registers
loads, O stores.

-1 registers
loads, O stores:
put Is read only once.

ogisters
loads, O stores,
orm has load-xor insn.

Two-operand friendliness:
Platform with a < a & b
but without a <~ 6@ ¢

uses only n extra coplies.

Naive column sweep also uses

n + 1 registers, n loads,
but usually many more xors.

Input partitioning
(e.g., 1956 Lupanov) uses
somewhat more xors, copies;

somewhat more registers.

Greedy additive CSE uses
somewhat fewer xors but

many more coples, registers.
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Two-operand friendliness:
Platform with a < a & b

but without a < b @ ¢

uses only n extra copies.

Naive column sweep a

n + 1 registers, n loac

SO USES
S,

but usually many more xors.

Input partitioning

(e.g., 1956 Lupanov) uses

somewhat more xors, copies;

somewhat more registers.

Greedy additive CSE uses
somewhat fewer xors but

many more coples, registers.

For m Iinputs an
average . X mn

The xor-largest a
~ mn/lgn two-
n coples; m load
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Two-operand friendliness:
Platform with a < a & b
but without a <— b &® ¢

uses only n extra coplies.

Naive column sweep also uses

n + 1 registers, n loads,
but usually many more xors.

Input partitioning
(e.g., 1956 Lupanov) uses
somewhat more xors, copies;

somewhat more registers.

Greedy additive CSE uses
somewhat fewer xors but

many more coples, registers.

For m inputs and n outpu
average n X m matrix:

The xor-largest algorithm
~ mn/lgn two-operand X

n copies; m loads; n + 1 r



Two-operand friendliness:
Platform with a < a & b
but without a <~ b &® ¢

uses only n extra copies.

Naive column sweep also uses

n + 1 registers, n loads,
but usually many more xors.

Input partitioning
(e.g., 1956 Lupanov) uses
somewhat more xors, copies;

somewhat more registers.

Greedy additive CSE uses
somewhat fewer xors but

many more coples, registers.

For m Inputs and n outputs,
average n X m matrix:

The xor-largest algorithm uses
~ mn/lgn two-operand xors;

n coples; m loads; n + 1 regs.



Two-operand friendliness:
Platform with a < a & b
but without a <~ b &® ¢

uses only n extra copies.

Naive column sweep also uses

n + 1 registers, n loads,
but usually many more xors.

Input partitioning
(e.g., 1956 Lupanov) uses
somewhat more xors, copies;

somewhat more registers.

Greedy additive CSE uses
somewhat fewer xors but
many more coples, registers.

For m Inputs and n outputs,
average n X m matrix:

The xor-largest algorithm uses
~ mn/lgn two-operand xors;

n coples; m loads; n + 1 regs.

Pippenger's algorithm uses
~ mn/|lgmn three-operand xors
but seems to need many regs.

Pippenger proved that

his algebraic complexity was
near optimal for most matrices
(at least without mod 2),

but didn't consider regs,
two-operand complexity, etc.
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For m Inputs and n outputs,
average n X m matrix:

The xor-largest algorithm uses
~ mn/lgn two-operand xors;

n coples; m loads; n + 1 regs.

Pippenger's algorithm uses
~ mn/|lgmn three-operand xors
but seems to need many regs.

Pippenger proved that

his algebraic complexity was
near optimal for most matrices
(at least without mod 2),

but didn't consider regs,
two-operand complexity, etc.
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For m Inputs and n outputs,
average n X m matrix:

The xor-largest algorithm uses
~ mn/lgn two-operand xors;

n coples; m loads; n + 1 regs.

Pippenger's algorithm uses
~ mn/|lgmn three-operand xors
but seems to need many regs.

Pippenger proved that

his algebraic complexity was
near optimal for most matrices
(at least without mod 2),

but didn't consider regs,
two-operand complexity, etc.

Case study of be
produced by xor-

131-bit conversic

poly basis to nor
"Random”™ 131 x

On Cell (<1 xor

128 — ¢ registers
code took &~ 960

Output of xor-lat
code with only 3
fitting into 132 r
Schwabe tuned ¢
~ 4000 cycles.



SES

S

For m Inputs and n outputs,
average n X m matrix:

The xor-largest algorithm uses
~ mn/lgn two-operand xors;

n coples; m loads; n + 1 regs.

Pippenger's algorithm uses
~ mn/|lgmn three-operand xors
but seems to need many regs.

Pippenger proved that

his algebraic complexity was
near optimal for most matrices
(at least without mod 2),

but didn't consider regs,
two-operand complexity, etc.

Case study of benefits

produced by xor-largest:

131-bit conversion from

poly basis to normal basis.
"Random” 131 x 131 mati

On Cell (<1 xor per cycle

128 — ¢ registers) bits
code took =~ 9600 cyc

Output of xor-largest:

Iced
es.

code with only 3380 xors

fitting into 132 registers.

Schwabe tuned asm for Ce

~ 4000 cycles.



For m Inputs and n outputs,
average n X m matrix:

The xor-largest algorithm uses
~ mn/lgn two-operand xors;

n coples; m loads; n + 1 regs.

Pippenger's algorithm uses
~ mn/|lgmn three-operand xors
but seems to need many regs.

Pippenger proved that

his algebraic complexity was
near optimal for most matrices
(at least without mod 2),

but didn't consider regs,
two-operand complexity, etc.

Case study of benefits
produced by xor-largest:

131-bit conversion from

poly basis to normal basis.
"Random” 131 x 131 matrix.

On Cell (<1 xor per cycle,
128 — ¢ registers) bitsliced
code took ~ 9600 cycles.

Output of xor-largest:

code with only 3380 xors
fitting into 132 registers.
Schwabe tuned asm for Cell:
~ 4000 cycles.
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Case study of benefits
produced by xor-largest:

131-bit conversion from
poly basis to normal basis.

"Random” 131 x 131 matrix.

On Cell (<1 xor per cycle,
128 — ¢ registers) bitsliced
code took ~ 9600 cycles.

Output of xor-largest:

code with only 3380 xors
fitting into 132 registers.
Schwabe tuned asm for Cell:
~ 4000 cycles.

Inspira

00010C
00001C
100101
01001C
001001
00000C
00000C

Goal: ¢
300z,
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Case study of benefits
produced by xor-largest:

131-bit conversion from
poly basis to normal basis.

"Random” 131 x 131 matrix.

On Cell (<1 xor per cycle,
128 — ¢ registers) bitsliced
code took ~ 9600 cycles.

Output of xor-largest:

code with only 3380 xors
fitting into 132 registers.
Schwabe tuned asm for Cell:
~ 4000 cycles.

Inspiration: 198C€

000100000 = 32
000010000 = 16
100101100 = 30f
010010010 = 14¢
001001101 =77
000000010 = 2

000000001 =1

Goal: Compute :
300z, 146z, 77x
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Case study of benefits
produced by xor-largest:

131-bit conversion from
poly basis to normal basis.

"Random” 131 x 131 matrix.

On Cell (<1 xor per cycle,
128 — ¢ registers) bitsliced
code took ~ 9600 cycles.

Output of xor-largest:

code with only 3380 xors
fitting into 132 registers.
Schwabe tuned asm for Cell:
~ 4000 cycles.

Inspiration: 1989 Bos—Cos

000100000 = 32
000010000 = 16
100101100 = 300
010010010 = 146
001001101 =77
000000010 = 2
000000001 =1

Goal: Compute 32z, 16z,
300z, 146z, 77z, 2z, 1lx.



Case study of benefits
produced by xor-largest:

131-bit conversion from
poly basis to normal basis.

"Random” 131 x 131 matrix.

On Cell (<1 xor per cycle,
128 — ¢ registers) bitsliced
code took ~ 9600 cycles.

Output of xor-largest:

code with only 3380 xors
fitting into 132 registers.
Schwabe tuned asm for Cell;
~ 4000 cycles.

Inspiration: 1989 Bos—Coster.

000100000 = 32
000010000 = 16
100101100 = 300
010010010 = 146
001001101 =77
000000010 = 2
000000001 =1

Goal: Compute 32z, 16z,
300z, 146z, 77z, 2z, 1x.
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= registers) bitsliced
ok =~ 9600 cycles.
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1ith only 3380 xors
into 132 registers.

be tuned asm for Cell:
) cycles.

Inspiration: 1989 Bos—Coster.

000100000 = 32
000010000 = 16
100101100 = 300
010010010 = 146
001001101 =77
000000010 = 2
000000001 =1

Goal: Compute 32z, 16z,
300z, 146z, 77z, 2z, lx.

Reduce

00010C
00001C
010011
01001C
001001
00000C
00000C

Integer
of 146
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Inspiration: 1989 Bos—Coster.

000100000 = 32
000010000 = 16
100101100 = 300
010010010 = 146
001001101 =77
000000010 = 2
000000001 =1

Goal: Compute 32z, 16z,
300z, 146z, 77z, 2z, 1x.

Reduce largest rc

000100000 = 32
000010000 = 16
010011010 = 15«
010010010 = 14¢
001001101 =77
000000010 = 2

000000001 =1

Integer subtracti
of 146 from 300.



I1X.

Inspiration: 1989 Bos—Coster.

000100000 = 32
000010000 = 16
100101100 = 300
010010010 = 146
001001101 =77
000000010 = 2
000000001 =1

Goal: Compute 32z, 16z,
300z, 146z, 77z, 2z, 1lx.

Reduce largest row:

000100000 = 32
000010000 = 16
010011010 = 154 <
010010010 = 146
001001101 =77
000000010 = 2
000000001 =1

Integer subtraction
of 146 from 300.



Inspiration: 1989 Bos—Coster.

000100000 = 32
000010000 = 16
100101100 = 300
010010010 = 146
001001101 =77
000000010 = 2
000000001 =1

Goal: Compute 32z, 16z,
300z, 146z, 77z, 2z, 1x.

Reduce largest row:

000100000 = 32
000010000 = 16
010011010 = 154 <
010010010 = 146
001001101 =77
000000010 = 2
000000001 =1

Integer subtraction
of 146 from 300.



Inspiration: 1989 Bos—Coster.

000100000 = 32
000010000 = 16
100101100 = 300
010010010 = 146
001001101 =77
000000010 = 2
000000001 =1

Goal: Compute 32z, 16z,
300z, 146z, 77z, 2z, 1x.

Reduce largest row:

000100000 = 32
000010000 = 16
000001000 = 8 <
010010010 = 146
001001101 =77
000000010 = 2
000000001 =1

plus 2 additions.



Inspiration: 1989 Bos—Coster.

000100000 = 32
000010000 = 16
100101100 = 300
010010010 = 146
001001101 =77
000000010 = 2
000000001 =1

Goal: Compute 32z, 16z,
300z, 146z, 77z, 2z, 1x.

Reduce largest row:

000100000 = 32
000010000 = 16
000001000 = 3
001000101 = 69 <«
001001101 =77
000000010 = 2
000000001 =1

plus 3 additions.



Inspiration: 1989 Bos—Coster.

000100000 = 32
000010000 = 16
100101100 = 300
010010010 = 146
001001101 =77
000000010 = 2
000000001 =1

Goal: Compute 32z, 16z,
300z, 146z, 77z, 2z, 1x.

Reduce largest row:

000100000 = 32
000010000 = 16
000001000 = 3
001000101 = 69
000001000 = 38 <
000000010 = 2
000000001 =1

plus 4 additions.



Inspiration: 1989 Bos—Coster.

000100000 = 32
000010000 = 16
100101100 = 300
010010010 = 146
001001101 =77
000000010 = 2
000000001 =1

Goal: Compute 32z, 16z,
300z, 146z, 77z, 2z, 1x.

Reduce largest row:

000100000 = 32
000010000 = 16
000001000 = 3
000100101 = 37 <+
000001000 = 3
000000010 = 2
000000001 =1

plus 5 additions.



Inspiration: 1989 Bos—Coster.

000100000 = 32
000010000 = 16
100101100 = 300
010010010 = 146
001001101 =77
000000010 = 2
000000001 =1

Goal: Compute 32z, 16z,
300z, 146z, 77z, 2z, 1x.

Reduce largest row:

000100000 = 32
000010000 = 16
000001000 = 3
000000101 =5 <
000001000 = 3
000000010 = 2
000000001 =1

plus 6 additions.



Inspiration: 1989 Bos—Coster.

000100000 = 32
000010000 = 16
100101100 = 300
010010010 = 146
001001101 =77
000000010 = 2
000000001 =1

Goal: Compute 32z, 16z,
300z, 146z, 77z, 2z, 1x.

Reduce largest row:

000010000 = 16 <«
000010000 = 16
000001000 = 3
000000101 =5
000001000 = 3
000000010 = 2
000000001 =1

plus 7 additions.



Inspiration: 1989 Bos—Coster.

000100000 = 32
000010000 = 16
100101100 = 300
010010010 = 146
001001101 =77
000000010 = 2
000000001 =1

Goal: Compute 32z, 16z,
300z, 146z, 77z, 2z, 1x.

Reduce largest row:

000000000 =0
000010000 = 16
000001000 = 3
000000101 =5
000001000 = 3
000000010 = 2
000000001 =1

plus 7 additions.



Inspiration: 1989 Bos—Coster.

000100000 = 32
000010000 = 16
100101100 = 300
010010010 = 146
001001101 =77
000000010 = 2
000000001 =1

Goal: Compute 32z, 16z,
300z, 146z, 77z, 2z, 1x.

Reduce largest row:

000000000 =0
000001000 = 8 <
000001000 = 3
000000101 =5
000001000 = 3
000000010 = 2
000000001 =1

plus 8 additions.



Inspiration: 1989 Bos—Coster.

000100000 = 32
000010000 = 16
100101100 = 300
010010010 = 146
001001101 =77
000000010 = 2
000000001 =1

Goal: Compute 32z, 16z,
300z, 146z, 77z, 2z, 1x.

Reduce largest row:

000000000 =0
000000000 = 0 <
000001000 = 3
000000101 =5
000001000 = 3
000000010 = 2
000000001 =1

plus 8 additions.



Inspiration: 1989 Bos—Coster.

000100000 = 32
000010000 = 16
100101100 = 300
010010010 = 146
001001101 =77
000000010 = 2
000000001 =1

Goal: Compute 32z, 16z,
300z, 146z, 77z, 2z, 1x.

Reduce largest row:

000000000 =0
000000000 =0
000000000 = 0 <
000000101 =5
000001000 = 3
000000010 = 2
000000001 =1

plus 8 additions.



Inspiration: 1989 Bos—Coster.

000100000 = 32
000010000 = 16
100101100 = 300
010010010 = 146
001001101 =77
000000010 = 2
000000001 =1

Goal: Compute 32z, 16z,
300z, 146z, 77z, 2z, 1x.

Reduce largest row:

000000000 =0
000000000 =0
000000000 =0
000000101 =5
000000011 = 3 <+
000000010 = 2
000000001 =1

plus 9 additions.



Inspiration: 1989 Bos—Coster.

000100000 = 32
000010000 = 16
100101100 = 300
010010010 = 146
001001101 =77
000000010 = 2
000000001 =1

Goal: Compute 32z, 16z,
300z, 146z, 77z, 2z, 1x.

Reduce largest row:

000000000 = 0
000000000 =0
000000000 = 0
000000010 = 2 <+
000000011 =3
000000010 = 2
000000001 =1

plus 10 additions.



Inspiration: 1989 Bos—Coster.

000100000 = 32
000010000 = 16
100101100 = 300
010010010 = 146
001001101 =77
000000010 = 2
000000001 =1

Goal: Compute 32z, 16z,
300z, 146z, 77z, 2z, 1x.

Reduce largest row:

000000000 = 0
000000000 =0
000000000 = 0
000000010 = 2
000000001 =1 <«
000000010 = 2
000000001 =1

plus 11 additions.



Inspiration: 1989 Bos—Coster.

000100000 = 32
000010000 = 16
100101100 = 300
010010010 = 146
001001101 =77
000000010 = 2
000000001 =1

Goal: Compute 32z, 16z,
300z, 146z, 77z, 2z, 1x.

Reduce largest row:

000000000 = 0
000000000 =0
000000000 = 0
000000000 = 0 <+
000000001 =1
000000010 = 2
000000001 =1

plus 11 additions.



Inspiration: 1989 Bos—Coster.

000100000 = 32
000010000 = 16
100101100 = 300
010010010 = 146
001001101 =77
000000010 = 2
000000001 =1

Goal: Compute 32z, 16z,
300z, 146z, 77z, 2z, 1x.

Reduce largest row:

000000000 = 0
000000000 =0
000000000 = 0
000000000 =0
000000001 =1
000000001 =1 <«
000000001 =1

plus 12 additions.



Inspiration: 1989 Bos—Coster.

000100000 = 32
000010000 = 16
100101100 = 300
010010010 = 146
001001101 =77
000000010 = 2
000000001 =1

Goal: Compute 32z, 16z,
300z, 146z, 77z, 2z, 1x.

Reduce largest row:

000000000 = 0
000000000 =0
000000000 = 0
000000000 =0
000000000 = 0 <«
000000001 =1
000000001 =1

plus 12 additions.



Inspiration: 1989 Bos—Coster.

000100000 = 32
000010000 = 16
100101100 = 300
010010010 = 146
001001101 =77
000000010 = 2
000000001 =1

Goal: Compute 32z, 16z,
300z, 146z, 77z, 2z, 1x.

Reduce largest row:

000000000 = 0
000000000 =0
000000000 = 0
000000000 =0
000000000 =0
000000000 = 0 <«
000000001 =1

plus 12 additions.



Inspiration: 1989 Bos—Coster. Reduce largest row:

000100000 = 32 000000000 =0
000010000 = 16 000000000 =0
100101100 = 300 000000000 =0
010010010 = 146 000000000 =0
001001101 = 77 000000000 =0
000000010 = 2 000000000 =0
000000001 =1 000000000 = 0 «+
Goal: Compute 32z, 16z, plus 12 additions.

300z, 146z, 77z, 2z, 1z. Final addition chain: 1, 2, 3, 5, 8,

16, 32, 37, 69, 77, 146, 154, 300.

Short, no temporary storage,
low two-operand complexity, etc.




tion: 1989 Bos—Coster.

000 = 32
000 = 16
100 = 300
010 = 146
101 =77
010 = 2
001 =1

_ompute 32z, 16z,
146z, (/x, 2z, 1x.

Reduce largest row:

000000000 = 0
000000000 = 0
000000000 = 0
000000000 = 0
000000000 = 0
000000000 = 0
000000000 = 0 <«

plus 12 additions.

Final addition chain: 1, 2, 3, 5, 8,
16, 32, 37, 69, 77, 146, 154, 300.

Short, no temporary storage,
low two-operand complexity, etc.

Can im
mod-2
of the

In redu
Why u:
the ren
Why n

Out of
Why d4
V\/hy N

or builc

Can re
comprc
I'm cor



) Bos—Coster.

)

32x, 16,
2z, 1zx.

Reduce largest row:

000000000 =0
000000000 = 0
000000000 = 0
000000000 =0
000000000 =0
000000000 =0
000000000 = 0 <«

plus 12 additions.

Final addition chain: 1, 2, 3, 5, 8,
16, 32, 37, 69, 77, 146, 154, 300.

Short, no temporary storage,
low two-operand complexity, etc.

Can imagine mai
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Ler.

Reduce largest row:

000000000 = 0
000000000 = 0
000000000 = 0
000000000 = 0
000000000 = 0
000000000 = 0
000000000 = 0 <«

plus 12 additions.

Final addition chain: 1, 2, 3, 5, 8,
16, 32, 37, 69, 77, 146, 154, 300.

Short, no temporary storage,
low two-operand complexity, etc.

Can imagine many other
mod-2 adaptations
of the Bos—Coster idea.

In reducing largest row:
Why use largest of

the remaining rows?
Why not minimize xor?

Out of first-bit-set rows:
Why do largest row first?
Why not start in middle,
or build Hamming tree?

Can reduce xors without
compromising regs etc.
I'm continuing to experime



Reduce largest row: Can imagine many other
mod-2 adaptations
of the Bos—Coster idea.

000000000 =0
000000000 = 0

000000000 =0 In reducing largest row:
000000000 =0 Why use largest of
000000000 =0 the remaining rows?
000000000 =0 Why not minimize xor?

000000000 = 0 « Out of first-bit-set rows:

plus 12 additions. Why do largest row first?
Why not start in middle,

Final addition chain: 1, 2, 3, 5, 8,
or build Hamming tree?

16, 32, 37, 69, 77, 146, 154, 300.

Can reduce xors without
Short, no temporary storage,

- compromising regs etc.
low two-operand complexity, etc. P & e

I'm continuing to experiment.




