
Optimizing linear maps modulo 2

(i.e.: fast xor sequences

for bitsliced software)

D. J. Bernstein

University of Illinois at Chicago

NSF ITR–0716498

Example: size-4 poly Karatsuba.

Start with size 2:

F = F0 + F1x, G = G0 + G1x,

H0 = F0G0, H2 = F1G1,

H1 = (F0+F1)(G0+G1)�H0�H2,

) FG = H0 + H1x + H2x2.

Substitute x = t2 etc.:

F = f0 + f1t + f2t2 + f3t3,
G = f0 + f1t + f2t2 + f3t3,
H0 = (f0 + f1t)(g0 + g1t),
H2 = (f2 + f3t)(g2 + g3t),
H1 = (f0 + f2 + (f1 + f3)t) �

(g0 + g2 + (g1 + g3)t)
�H0 �H2

) FG = H0 + H1t2 + H2t4.
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(g0 + g2 + (g1 + g3)t)
�H0 �H2

) FG = H0 + H1t2 + H2t4.

Initial linear computation:

f0 + f2; f1 + f3; g0 + g2; g1 + g3;

algebraic complexity 4.

Three size-2 mults producing

H0 = p0 + p1t + p2t2;
H2 = q0 + q1t + q2t2;
H0 + H1 + H2 = r0 + r1t + r2t2.
Final linear reconstruction:

H1 = (r0 � p0 � q0) +

(r1 � p1 � q1)t +

(r2 � p2 � q2)t2,
algebraic complexity 6;

FG = H0 + H1t2 + H2t4,
algebraic complexity 2.
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Let’s look more closely

at the reconstruction:

h0 = p0;

h1 = p1;

h2 = p2 + (r0 � p0 � q0);
h3 = (r1 � p1 � q1);
h4 = (r2 � p2 � q2) + q0;
h5 = q1;
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Some addition-chain algorithms

will automatically

find this speedup.

Consider, e.g., greedy additive

CSE algorithm from 1997 Paar:

� find input pair i0; i1
with most popular i0 � i1;
� compute i0 � i1;
� simplify using i0 � i1;
� repeat.

This algorithm would have

automatically found p2 � q0
inside Karatsuba reconstruction.
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Today’s algorithm: “xor largest.”

Start with the matrix mod 2

for the desired linear map.

h0: 100000000

h1: 010000000

h2: 101100100

h3: 010010010

h4: 001101001

h5: 000010000

h6: 000001000

Each row has coefficients of

p0; p1; p2; q0; q1; q2; r0; r1; r2.
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p0; p1; p2; q0; q1; q2; r0; r1; r2.

Replace largest row

by its xor with

second-largest row.

100000000

010000000

001100100  
010010010

001101001

000010000

000001000

Recursively compute this,

and finish with one xor.



Today’s algorithm: “xor largest.”

Start with the matrix mod 2

for the desired linear map.

h0: 100000000

h1: 010000000

h2: 101100100

h3: 010010010

h4: 001101001

h5: 000010000

h6: 000001000

Each row has coefficients of

p0; p1; p2; q0; q1; q2; r0; r1; r2.

Replace largest row

by its xor with

second-largest row.

100000000

010000000

001100100  
010010010

001101001

000010000

000001000

Recursively compute this,

and finish with one xor.



Today’s algorithm: “xor largest.”

Start with the matrix mod 2

for the desired linear map.

h0: 100000000

h1: 010000000

h2: 101100100

h3: 010010010

h4: 001101001

h5: 000010000

h6: 000001000

Each row has coefficients of

p0; p1; p2; q0; q1; q2; r0; r1; r2.

Replace largest row

by its xor with

second-largest row.

100000000

010000000

001100100  
010010010

001101001

000010000

000001000

Recursively compute this,

and finish with one xor.

If two largest rows

don’t have same first bit,

change largest row

by clearing first bit.

000000000  
010000000

001100100

010010010

001101001

000010000

000001000

Recursively compute this,

and finish with one xor

(often just a copy).



Today’s algorithm: “xor largest.”

Start with the matrix mod 2

for the desired linear map.

h0: 100000000

h1: 010000000

h2: 101100100

h3: 010010010

h4: 001101001

h5: 000010000

h6: 000001000

Each row has coefficients of

p0; p1; p2; q0; q1; q2; r0; r1; r2.

Replace largest row

by its xor with

second-largest row.

100000000

010000000

001100100  
010010010

001101001

000010000

000001000

Recursively compute this,

and finish with one xor.

If two largest rows

don’t have same first bit,

change largest row

by clearing first bit.

000000000  
010000000

001100100

010010010

001101001

000010000

000001000

Recursively compute this,

and finish with one xor

(often just a copy).



Today’s algorithm: “xor largest.”

Start with the matrix mod 2

for the desired linear map.

h0: 100000000

h1: 010000000

h2: 101100100

h3: 010010010

h4: 001101001

h5: 000010000

h6: 000001000

Each row has coefficients of

p0; p1; p2; q0; q1; q2; r0; r1; r2.

Replace largest row

by its xor with

second-largest row.

100000000

010000000

001100100  
010010010

001101001

000010000

000001000

Recursively compute this,

and finish with one xor.

If two largest rows

don’t have same first bit,

change largest row

by clearing first bit.

000000000  
010000000

001100100

010010010

001101001

000010000

000001000

Recursively compute this,

and finish with one xor

(often just a copy).



Replace largest row

by its xor with

second-largest row.

100000000

010000000

001100100  
010010010

001101001

000010000

000001000

Recursively compute this,

and finish with one xor.

If two largest rows

don’t have same first bit,

change largest row

by clearing first bit.

000000000  
010000000

001100100

010010010

001101001

000010000

000001000

Recursively compute this,

and finish with one xor

(often just a copy).



Replace largest row

by its xor with

second-largest row.

100000000

010000000

001100100  
010010010

001101001

000010000

000001000

Recursively compute this,

and finish with one xor.

If two largest rows

don’t have same first bit,

change largest row

by clearing first bit.

000000000  
010000000

001100100

010010010

001101001

000010000

000001000

Recursively compute this,

and finish with one xor

(often just a copy).

Continue in the same way:

100000000

010000000

101100100

010010010

001101001

000010000

000001000

(starting matrix again)



Replace largest row

by its xor with

second-largest row.

100000000

010000000

001100100  
010010010

001101001

000010000

000001000

Recursively compute this,

and finish with one xor.

If two largest rows

don’t have same first bit,

change largest row

by clearing first bit.

000000000  
010000000

001100100

010010010

001101001

000010000

000001000

Recursively compute this,

and finish with one xor

(often just a copy).

Continue in the same way:

100000000

010000000

101100100

010010010

001101001

000010000

000001000

(starting matrix again)



Replace largest row

by its xor with

second-largest row.

100000000

010000000

001100100  
010010010

001101001

000010000

000001000

Recursively compute this,

and finish with one xor.

If two largest rows

don’t have same first bit,

change largest row

by clearing first bit.

000000000  
010000000

001100100

010010010

001101001

000010000

000001000

Recursively compute this,

and finish with one xor

(often just a copy).

Continue in the same way:

100000000

010000000

101100100

010010010

001101001

000010000

000001000

(starting matrix again)



If two largest rows

don’t have same first bit,

change largest row

by clearing first bit.

000000000  
010000000

001100100

010010010

001101001

000010000

000001000

Recursively compute this,

and finish with one xor

(often just a copy).

Continue in the same way:

100000000

010000000

101100100

010010010

001101001

000010000

000001000

(starting matrix again)



If two largest rows

don’t have same first bit,

change largest row

by clearing first bit.

000000000  
010000000

001100100

010010010

001101001

000010000

000001000

Recursively compute this,

and finish with one xor

(often just a copy).

Continue in the same way:

100000000

010000000

001100100  
010010010

001101001

000010000

000001000

plus 1 xor.



If two largest rows

don’t have same first bit,

change largest row

by clearing first bit.

000000000  
010000000

001100100

010010010

001101001

000010000

000001000

Recursively compute this,

and finish with one xor

(often just a copy).

Continue in the same way:

000000000  
010000000

001100100

010010010

001101001

000010000

000001000

plus 1 xor, 1 input load.



If two largest rows

don’t have same first bit,

change largest row

by clearing first bit.

000000000  
010000000

001100100

010010010

001101001

000010000

000001000

Recursively compute this,

and finish with one xor

(often just a copy).

Continue in the same way:

000000000

010000000

001100100

000010010  
001101001

000010000

000001000

plus 2 xors, 1 input load.



If two largest rows

don’t have same first bit,

change largest row

by clearing first bit.

000000000  
010000000

001100100

010010010

001101001

000010000

000001000

Recursively compute this,

and finish with one xor

(often just a copy).

Continue in the same way:

000000000

000000000  
001100100

000010010

001101001

000010000

000001000

plus 2 xors, 2 input loads.



If two largest rows

don’t have same first bit,

change largest row

by clearing first bit.

000000000  
010000000

001100100

010010010

001101001

000010000

000001000

Recursively compute this,

and finish with one xor

(often just a copy).

Continue in the same way:

000000000

000000000

001100100

000010010

000001101  
000010000

000001000

plus 3 xors, 2 input loads.



If two largest rows

don’t have same first bit,

change largest row

by clearing first bit.

000000000  
010000000

001100100

010010010

001101001

000010000

000001000

Recursively compute this,

and finish with one xor

(often just a copy).

Continue in the same way:

000000000

000000000

000100100  
000010010

000001101

000010000

000001000

plus 4 xors, 3 input loads.



If two largest rows

don’t have same first bit,

change largest row

by clearing first bit.

000000000  
010000000

001100100

010010010

001101001

000010000

000001000

Recursively compute this,

and finish with one xor

(often just a copy).

Continue in the same way:

000000000

000000000

000000100  
000010010

000001101

000010000

000001000

plus 5 xors, 4 input loads.



If two largest rows

don’t have same first bit,

change largest row

by clearing first bit.

000000000  
010000000

001100100

010010010

001101001

000010000

000001000

Recursively compute this,

and finish with one xor

(often just a copy).

Continue in the same way:

000000000

000000000

000000100

000000010  
000001101

000010000

000001000

plus 6 xors, 4 input loads.



If two largest rows

don’t have same first bit,

change largest row

by clearing first bit.

000000000  
010000000

001100100

010010010

001101001

000010000

000001000

Recursively compute this,

and finish with one xor

(often just a copy).

Continue in the same way:

000000000

000000000

000000100

000000010

000001101

000000000  
000001000

plus 6 xors, 5 input loads.



If two largest rows

don’t have same first bit,

change largest row

by clearing first bit.

000000000  
010000000

001100100

010010010

001101001

000010000

000001000

Recursively compute this,

and finish with one xor

(often just a copy).

Continue in the same way:

000000000

000000000

000000100

000000010

000000101  
000000000

000001000

plus 7 xors, 5 input loads.



If two largest rows

don’t have same first bit,

change largest row

by clearing first bit.

000000000  
010000000

001100100

010010010

001101001

000010000

000001000

Recursively compute this,

and finish with one xor

(often just a copy).

Continue in the same way:

000000000

000000000

000000100

000000010

000000101

000000000

000000000  
plus 7 xors, 6 input loads.



If two largest rows

don’t have same first bit,

change largest row

by clearing first bit.

000000000  
010000000

001100100

010010010

001101001

000010000

000001000

Recursively compute this,

and finish with one xor

(often just a copy).

Continue in the same way:

000000000

000000000

000000100

000000010

000000001  
000000000

000000000

plus 8 xors, 6 input loads.



If two largest rows

don’t have same first bit,

change largest row

by clearing first bit.

000000000  
010000000

001100100

010010010

001101001

000010000

000001000

Recursively compute this,

and finish with one xor

(often just a copy).

Continue in the same way:

000000000

000000000

000000000  
000000010

000000001

000000000

000000000

plus 8 xors, 7 input loads.



If two largest rows

don’t have same first bit,

change largest row

by clearing first bit.

000000000  
010000000

001100100

010010010

001101001

000010000

000001000

Recursively compute this,

and finish with one xor

(often just a copy).

Continue in the same way:

000000000

000000000

000000000

000000000  
000000001

000000000

000000000

plus 8 xors, 8 input loads.



If two largest rows

don’t have same first bit,

change largest row

by clearing first bit.

000000000  
010000000

001100100

010010010

001101001

000010000

000001000

Recursively compute this,

and finish with one xor

(often just a copy).

Continue in the same way:

000000000

000000000

000000000

000000000

000000000  
000000000

000000000

plus 8 xors, 9 input loads.



If two largest rows

don’t have same first bit,

change largest row

by clearing first bit.

000000000  
010000000

001100100

010010010

001101001

000010000

000001000

Recursively compute this,

and finish with one xor

(often just a copy).

Continue in the same way:

000000000

000000000

000000000

000000000

000000000  
000000000

000000000

plus 8 xors, 9 input loads.

“Is this supposed to be

an interesting algorithm?”



If two largest rows

don’t have same first bit,

change largest row

by clearing first bit.

000000000  
010000000

001100100

010010010

001101001

000010000

000001000

Recursively compute this,

and finish with one xor

(often just a copy).

Continue in the same way:

000000000

000000000

000000000

000000000

000000000  
000000000

000000000

plus 8 xors, 9 input loads.

“Is this supposed to be

an interesting algorithm?”

Another example:

000100000

000010000

100101100

010010010

001001101

000000010

000000001

Same matrix, but inputs

in a different order:

first r’s (used once each),

then p’s (used twice each),

then q’s (used twice each).



If two largest rows

don’t have same first bit,

change largest row

by clearing first bit.

000000000  
010000000

001100100

010010010

001101001

000010000

000001000

Recursively compute this,

and finish with one xor

(often just a copy).

Continue in the same way:

000000000

000000000

000000000

000000000

000000000  
000000000

000000000

plus 8 xors, 9 input loads.

“Is this supposed to be

an interesting algorithm?”

Another example:

000100000

000010000

100101100

010010010

001001101

000000010

000000001

Same matrix, but inputs

in a different order:

first r’s (used once each),

then p’s (used twice each),

then q’s (used twice each).



If two largest rows

don’t have same first bit,

change largest row

by clearing first bit.

000000000  
010000000

001100100

010010010

001101001

000010000

000001000

Recursively compute this,

and finish with one xor

(often just a copy).

Continue in the same way:

000000000

000000000

000000000

000000000

000000000  
000000000

000000000

plus 8 xors, 9 input loads.

“Is this supposed to be

an interesting algorithm?”

Another example:

000100000

000010000

100101100

010010010

001001101

000000010

000000001

Same matrix, but inputs

in a different order:

first r’s (used once each),

then p’s (used twice each),

then q’s (used twice each).



Continue in the same way:

000000000

000000000

000000000

000000000

000000000  
000000000

000000000

plus 8 xors, 9 input loads.

“Is this supposed to be

an interesting algorithm?”

Another example:

000100000

000010000

100101100

010010010

001001101

000000010

000000001

Same matrix, but inputs

in a different order:

first r’s (used once each),

then p’s (used twice each),

then q’s (used twice each).



Continue in the same way:

000000000

000000000

000000000

000000000

000000000  
000000000

000000000

plus 8 xors, 9 input loads.

“Is this supposed to be

an interesting algorithm?”

Another example:

000100000

000010000

000101100  
010010010

001001101

000000010

000000001

plus 1 xor, 1 input load.



Continue in the same way:

000000000

000000000

000000000

000000000

000000000  
000000000

000000000

plus 8 xors, 9 input loads.

“Is this supposed to be

an interesting algorithm?”

Another example:

000100000

000010000

000101100

000010010  
001001101

000000010

000000001

plus 2 xors, 2 input loads.



Continue in the same way:

000000000

000000000

000000000

000000000

000000000  
000000000

000000000

plus 8 xors, 9 input loads.

“Is this supposed to be

an interesting algorithm?”

Another example:

000100000

000010000

000101100

000010010

000001101  
000000010

000000001

plus 3 xors, 3 input loads.



Continue in the same way:

000000000

000000000

000000000

000000000

000000000  
000000000

000000000

plus 8 xors, 9 input loads.

“Is this supposed to be

an interesting algorithm?”

Another example:

000100000

000010000

000001100  
000010010

000001101

000000010

000000001

plus 4 xors, 3 input loads.



Continue in the same way:

000000000

000000000

000000000

000000000

000000000  
000000000

000000000

plus 8 xors, 9 input loads.

“Is this supposed to be

an interesting algorithm?”

Another example:

000000000  
000010000

000001100

000010010

000001101

000000010

000000001

plus 4 xors, 4 input loads.



Continue in the same way:

000000000

000000000

000000000

000000000

000000000  
000000000

000000000

plus 8 xors, 9 input loads.

“Is this supposed to be

an interesting algorithm?”

Another example:

000000000

000010000

000001100

000000010  
000001101

000000010

000000001

plus 5 xors, 4 input loads.



Continue in the same way:

000000000

000000000

000000000

000000000

000000000  
000000000

000000000

plus 8 xors, 9 input loads.

“Is this supposed to be

an interesting algorithm?”

Another example:

000000000

000000000  
000001100

000000010

000001101

000000010

000000001

plus 5 xors, 5 input loads.



Continue in the same way:

000000000

000000000

000000000

000000000

000000000  
000000000

000000000

plus 8 xors, 9 input loads.

“Is this supposed to be

an interesting algorithm?”

Another example:

000000000

000000000

000001100

000000010

000000001  
000000010

000000001

plus 6 xors, 5 input loads.



Continue in the same way:

000000000

000000000

000000000

000000000

000000000  
000000000

000000000

plus 8 xors, 9 input loads.

“Is this supposed to be

an interesting algorithm?”

Another example:

000000000

000000000

000000100  
000000010

000000001

000000010

000000001

plus 7 xors, 6 input loads.



Continue in the same way:

000000000

000000000

000000000

000000000

000000000  
000000000

000000000

plus 8 xors, 9 input loads.

“Is this supposed to be

an interesting algorithm?”

Another example:

000000000

000000000

000000000  
000000010

000000001

000000010

000000001

plus 7 xors, 7 input loads.



Continue in the same way:

000000000

000000000

000000000

000000000

000000000  
000000000

000000000

plus 8 xors, 9 input loads.

“Is this supposed to be

an interesting algorithm?”

Another example:

000000000

000000000

000000000

000000000  
000000001

000000010

000000001

plus 7 xors, 7 input loads.



Continue in the same way:

000000000

000000000

000000000

000000000

000000000  
000000000

000000000

plus 8 xors, 9 input loads.

“Is this supposed to be

an interesting algorithm?”

Another example:

000000000

000000000

000000000

000000000

000000001

000000000  
000000001

plus 7 xors, 8 input loads.



Continue in the same way:

000000000

000000000

000000000

000000000

000000000  
000000000

000000000

plus 8 xors, 9 input loads.

“Is this supposed to be

an interesting algorithm?”

Another example:

000000000

000000000

000000000

000000000

000000000  
000000000

000000001

plus 7 xors, 8 input loads.



Continue in the same way:

000000000

000000000

000000000

000000000

000000000  
000000000

000000000

plus 8 xors, 9 input loads.

“Is this supposed to be

an interesting algorithm?”

Another example:

000000000

000000000

000000000

000000000

000000000

000000000

000000000  
plus 7 xors, 9 input loads.

Algorithm found the speedup.



Continue in the same way:

000000000

000000000

000000000

000000000

000000000  
000000000

000000000

plus 8 xors, 9 input loads.

“Is this supposed to be

an interesting algorithm?”

Another example:

000000000

000000000

000000000

000000000

000000000

000000000

000000000  
plus 7 xors, 9 input loads.

Algorithm found the speedup.

Also has other useful features.



Continue in the same way:

000000000

000000000

000000000

000000000

000000000  
000000000

000000000

plus 8 xors, 9 input loads.

“Is this supposed to be

an interesting algorithm?”

Another example:

000000000

000000000

000000000

000000000

000000000

000000000

000000000  
plus 7 xors, 9 input loads.

Algorithm found the speedup.

Also has other useful features.

Memory friendliness:

Algorithm writes only

to the output registers.

No temporary storage.

n inputs, n outputs:

total 2n registers

with 0 loads, 0 stores.

Or n + 1 registers

with n loads, 0 stores:

each input is read only once.

Or n registers

with n loads, 0 stores,

if platform has load-xor insn.



Continue in the same way:

000000000

000000000

000000000

000000000

000000000  
000000000

000000000

plus 8 xors, 9 input loads.

“Is this supposed to be

an interesting algorithm?”

Another example:

000000000

000000000

000000000

000000000

000000000

000000000

000000000  
plus 7 xors, 9 input loads.

Algorithm found the speedup.

Also has other useful features.

Memory friendliness:

Algorithm writes only

to the output registers.

No temporary storage.

n inputs, n outputs:

total 2n registers

with 0 loads, 0 stores.

Or n + 1 registers

with n loads, 0 stores:

each input is read only once.

Or n registers

with n loads, 0 stores,

if platform has load-xor insn.



Continue in the same way:

000000000

000000000

000000000

000000000

000000000  
000000000

000000000

plus 8 xors, 9 input loads.

“Is this supposed to be

an interesting algorithm?”

Another example:

000000000

000000000

000000000

000000000

000000000

000000000

000000000  
plus 7 xors, 9 input loads.

Algorithm found the speedup.

Also has other useful features.

Memory friendliness:

Algorithm writes only

to the output registers.

No temporary storage.

n inputs, n outputs:

total 2n registers

with 0 loads, 0 stores.

Or n + 1 registers

with n loads, 0 stores:

each input is read only once.

Or n registers

with n loads, 0 stores,

if platform has load-xor insn.



Another example:

000000000

000000000

000000000

000000000

000000000

000000000

000000000  
plus 7 xors, 9 input loads.

Algorithm found the speedup.

Also has other useful features.

Memory friendliness:

Algorithm writes only

to the output registers.

No temporary storage.

n inputs, n outputs:

total 2n registers

with 0 loads, 0 stores.

Or n + 1 registers

with n loads, 0 stores:

each input is read only once.

Or n registers

with n loads, 0 stores,

if platform has load-xor insn.



Another example:

000000000

000000000

000000000

000000000

000000000

000000000

000000000  
plus 7 xors, 9 input loads.

Algorithm found the speedup.

Also has other useful features.

Memory friendliness:

Algorithm writes only

to the output registers.

No temporary storage.

n inputs, n outputs:

total 2n registers

with 0 loads, 0 stores.

Or n + 1 registers

with n loads, 0 stores:

each input is read only once.

Or n registers

with n loads, 0 stores,

if platform has load-xor insn.

Two-operand friendliness:

Platform with a a� b
but without a b� 

uses only n extra copies.

Naive column sweep also uses

n + 1 registers, n loads,

but usually many more xors.

Input partitioning

(e.g., 1956 Lupanov) uses

somewhat more xors, copies;

somewhat more registers.

Greedy additive CSE uses

somewhat fewer xors but

many more copies, registers.



Another example:

000000000

000000000

000000000

000000000

000000000

000000000

000000000  
plus 7 xors, 9 input loads.

Algorithm found the speedup.

Also has other useful features.

Memory friendliness:

Algorithm writes only

to the output registers.

No temporary storage.

n inputs, n outputs:

total 2n registers

with 0 loads, 0 stores.

Or n + 1 registers

with n loads, 0 stores:

each input is read only once.

Or n registers

with n loads, 0 stores,

if platform has load-xor insn.

Two-operand friendliness:

Platform with a a� b
but without a b� 

uses only n extra copies.

Naive column sweep also uses

n + 1 registers, n loads,

but usually many more xors.

Input partitioning

(e.g., 1956 Lupanov) uses

somewhat more xors, copies;

somewhat more registers.

Greedy additive CSE uses

somewhat fewer xors but

many more copies, registers.



Another example:

000000000

000000000

000000000

000000000

000000000

000000000

000000000  
plus 7 xors, 9 input loads.

Algorithm found the speedup.

Also has other useful features.

Memory friendliness:

Algorithm writes only

to the output registers.

No temporary storage.

n inputs, n outputs:
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Schwabe tuned asm for Cell:
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plus 2 additions.



Inspiration: 1989 Bos–Coster.

000100000 = 32

000010000 = 16
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000000001 = 1
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000010000 = 16
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Inspiration: 1989 Bos–Coster.

000100000 = 32

000010000 = 16

100101100 = 300

010010010 = 146

001001101 = 77

000000010 = 2

000000001 = 1

Goal: Compute 32x, 16x,

300x, 146x, 77x, 2x, 1x.

Reduce largest row:

000000000 = 0

000000000 = 0

000000000 = 0

000000000 = 0

000000000 = 0

000000000 = 0

000000000 = 0  
plus 12 additions.

Final addition chain: 1, 2, 3, 5, 8,

16, 32, 37, 69, 77, 146, 154, 300.

Short, no temporary storage,

low two-operand complexity, etc.

Can imagine many other

mod-2 adaptations

of the Bos–Coster idea.

In reducing largest row:

Why use largest of

the remaining rows?

Why not minimize xor?

Out of first-bit-set rows:

Why do largest row first?

Why not start in middle,

or build Hamming tree?

Can reduce xors without

compromising regs etc.

I’m continuing to experiment.
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